Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Истомин Е.П., Неклюдова С.А., Слесарева Л.С.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ИНФОРМАТИКЕ И ПРОГРАММИРОВАНИЮ

Учебное пособие

Санкт-Петербург, 2010 г.

Истомин Е.П., Неклюдова С.А., Слесарева Л.С. Лабораторный практикум по информатике и программированию. Учебное пособие. – СПб. ООО «Андреевский издательский дом», 2010 - 78 с.

В учебном пособии представлены задания для выполнения лабораторных работ по дисциплине «Информатика и программирование» для студентов, обучающихся по специальности «Информатика и программирование», а также может быть использовано для студентов, обучающихся по другим специальностям изучающим информатику и программирование.

Истомин Е.П., Неклюдова С.А., Слесарева Л.С.

Лабораторный практикум по информатике и программированию.

ООО «Андреевский издательский дом»

197738, Санкт-Петербург, пос. Репино, Приморское шоссе, д. 394

E-mail: biom@nm.ru

Подписано в печать 15.10.2010 г.

Печ. листов 4,88. Тираж 200 экз.

[©] Истомин Е.П., Неклюдова С.А., Слесарева Л.С.

[©] ГОУ ВПО РГГМУ

ВВЕДЕНИЕ

Сборник заданий для выполнения лабораторных работ является учебным пособием по курсу "Информатика", преследует цель привить практические навыки в составление алгоритмов, написание и отладку программ на алгоритмическом языке Паскаль в интегрированной среде TURBO или BORLAND PASCAL. Большинство задач может быть использовано при обучении программированию на любом другом процедурном языке, ориентированном на задачи экономического и технического профиля. Сборник состоит из разделов, задания в каждом из них решаются сходными приемами программирования, описанными в [10]. Во всех разделах представлено около 20 вариантов заданий.

Для большинства разделов не представлялось нужным предпосылать задачам специальные методические указания или краткое изложение способов решения, т.к. требуемый методический материал можно найти в учебниках и учебных пособиях. Ответы отсутствуют, поэтому студенты должны не только составить и без ошибок оттранслировать программу (модуль), но и проверить ее работоспособность для всех возможных значений входных переменных и параметров с помощью тестов, а если потребуется, то использовать трассировку и ручные расчеты. Это вызвано, в первую очередь, стремлением представить материал для самостоятельной работы и развития навыков отладки алгоритмов, а также для превращения контрольных мероприятий по проверке знаний студентов в часть учебного процесса.

1. ЛИНЕЙНЫЙ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС

Линейным вычислительным процессом называется алгоритм (программа), в котором выполняются все блоки (операторы) только один раз в строгой. заранее определенной последовательности. В этом разделе необходимо по формулам построить программу, ввести с клавиатуры значения параметров и вывести на экран значения вычисленных величин.

1.1* Программирование формул

1. Даны вещественные значения параметров а, b. Вычислить X, Y, Z:

$$X = lg^{3}a + sin(b^{2});$$

 $Y = a^{3} / b^{X};$
 $Z = |X|^{(1/6)} + 3\sqrt{|X| + |Y|}.$

Контрольный расчет: a = 2, b = 3.

2. Даны вещественные значения параметров a, b. Вычислить X, Y:

$$X = \frac{e^{-|a|}^{0.2} + \cos(a^4 - b)}{a \cdot b};$$
$$Y = \frac{\cos(a^4 - b) + arctg(a)}{b + X}.$$

Контрольный расчет: a = 1, b = 2.

$$a = 1, b = 2.$$

3. Даны вещественные значения параметров a, b. Вычислить X, Y:

$$X = \ln \sqrt{|a^{3} + a^{2} \cdot b + a \cdot b^{2} + b^{3}|};$$

$$Y = \sin(\pi \cdot X + 30^{\circ}) + \cos(\pi \cdot X).$$

Контрольный расчет:

$$a = 1, b = 1;$$

4. Даны вещественные значения переменных параметров a, b. Вычислить X, Y:

$$X = arctg(a + b) + ctg(a - b);$$

 $Y = sin^{2}(a^{3}) + cos^{2}b + sin(X^{2})$

Контрольный расчет: a = 1, b = 0.

5. Даны вещественные значения переменных параметров а, b. Вычислить X и Y:

$$X = \ln |1 + \sqrt{\sin^2 b + \cos^2 a}|;$$

$$Y = \frac{X^2 + \cos X + 10}{X^2 - \sin X + 15}.$$

Контрольный расчет:

 $a = b = \pi / 2$.

6. Вычислить С и В при заданных значениях а и Z.

$$C = ((Z + \frac{Z}{Z^2 + a^2} + a^3(Z + 2.3)(Z^2 + a^2) - a)^5 - Z^{a(Z^2 + a^2)} + Z \cdot \ln Z)^{1.5};$$

$$B = (a^2 + C^2) \cdot (C - a^2 - Z^2).$$

7. Вычислить С и В при заданных значениях а и х.

$$C = \left(\left(a \cdot (x+1)^2 + \sin^4 x - 1 + \frac{3.089 \cdot x^4 - 2}{1 - \frac{x-1}{x+1}} \right)^2 + x \cdot \left(\frac{(x+1)^2 - 2}{x} + 3 \cdot x \right)^3 \right)^2;$$

$$B = \left(\frac{C}{a+x} \right)^{\frac{3}{2}}.$$

8. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \sqrt{|a| + \sqrt{|a| + |b|} + (a - b)^{2}};$$
$$Y = \frac{tg^{2}(|a| + X + 30^{\circ}) \cdot e^{-X}}{Y + 25^{0.4}}.$$

Контрольный расчет a = 2; b = 1.

9. Даны вещественные значения переменных а, b, c. Вычислить X, Y:

$$X = \sqrt{\sqrt{|a|+|b|} + \sqrt{|a|-|b|}};$$

$$Y = \frac{a \cdot X^2 + b \cdot X + c}{\ln |e^{a \cdot X} + e^{b \cdot X}|}.$$

Контрольный расчет: a = 1, b = 1, c = 4.

10. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{\sin(70^{o}) + \pi \cdot e^{-|a+b|}}{\cos(75^{o}) \cdot \lg(a^{2} + b^{2})};$$

$$Y = \frac{(\mid X \mid +2.5)^{-} \mid a+b+1.5 \mid +\sin(e^{-} \mid X \mid +1.5)}{a \cdot b + \mid a-b \mid \sqrt{a^2 + b^2 + 1}}.$$

Контрольный расчет: a = 2, b = 5.

11. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{\frac{1}{|a+b|+1.4} + \frac{b \cdot |a|^{0.3}}{4.5}}{\pi + \cos(\pi + 2.5)};$$
$$Y = \frac{\pi \sqrt{a^2 + \sqrt[3]{a^2 + b^2}}}{|X| + e^{-|X| - 0.65|}}.$$

Контрольный расчет: a = 3, b = 2.

12. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{|a+1|^{|b+1|} + e^{-\left|\cos(a) + \sqrt{|b|}\right|}}{\left|\lg(|a| + |b| + 1.5)\right|^{0.6} + (a+b)^4};$$
$$Y = \frac{|a-b| \cdot \cos(a+b) - \frac{a}{\sqrt{|a+b| + 1.2}}}{|x| \cdot e^{-|x|} + \sqrt{e^{-|a|} + 1.5}}.$$

Контрольный расчет: a = 1, b = 0.

13. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{tg^{2} \left(\frac{\cos(75^{o}) + \sin\left(\frac{\pi}{5}\right)}{2}\right) + |a|^{|b|^{0.2}}}{(|a| + 0.7)^{0.2} + a^{2} + \sqrt{|a + b|}};$$
$$Y = \frac{\cos(X + a + b) - \sin^{2}(X + a)^{3}}{\log_{2}(X + a + 1.4) - e^{-|X| + 0.2}}.$$

Контрольный расчет: a = 0.3, b = 4.

14. Даны вещественные значения параметров a, b. Вычислить X, Y:

$$X = \frac{\left(a^2 + b^2 + \sqrt{a^2 + b^2}\right)^{0.4} + \sqrt{a^2 + b^2}}{(\mid a \mid +1.5) \cdot (\mid b \mid +0.2)};$$

$$Y = \frac{X + \frac{a + b}{\mid X \mid +1.5}}{e^{-\mid X \mid} + \sqrt{\mid a + b \mid +\pi}}.$$

Контрольный расчет: a = 0, b = 1.

15. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{|a| \cdot |b|^{0.3} + \frac{a^2 + b^4}{a^3 + b^5 + 1.2}}{e^{-|a+b| \cdot \cos\left(\frac{\pi}{7}\right) + 1.2}};$$

$$Y = \frac{\log\frac{2}{2}(|X|^{1.5} + 1.5)^{0.4} + a^2 \cdot (a+b)^3}{\sin\left(\frac{\pi}{5} + 1.5 \cdot X\right) + \sqrt{|a| + 3\sqrt{|a+b|}}}.$$

Контрольный расчет: a = -3, b = 4.

16. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{tg^{2}\left(\frac{a}{\mid a+b\mid +1.3} +1.5\right) + e^{-\mid a\mid}}{2.5^{-\mid a\mid} + e^{-\mid a+b\mid}};$$

$$Y = \frac{1.2 \cdot \sqrt{\mid X\mid +1.5} + \sqrt{(a+b)^{2} +1.3}}{(a-b)^{3} + \cos^{2}\left(\frac{\pi}{\Omega}\right)^{3} + 3^{-\mid X+a+b\mid}}.$$

Контрольный расчет: a = 0, b = 0.

17. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{(a^2 + b^2 + 1.2)^{0.3} + \frac{2 \cdot \pi}{a^2 + b^2 + 1.2}}{\sin(|a| + 1.5^{0.3}) + \cos(|b| + 1.5^{0.3} + |a|)};$$

$$Y = \frac{|X + 1.5|^{0.45} + \frac{a - b}{(a + b)^2 + 1.3}}{X + (a + b)^4 + 1.3}.$$

Контрольный расчет: a = 0, b = 0.

18. Даны вещественные значения параметров а, b. Вычислить X, Y:

$$X = \frac{\sin^{1.5} \left(\frac{a^2}{a^2 + 1.2}\right) + e^{-|a+b|}}{\lg^2 (a^2 + b^2) + \frac{\pi}{\sin^2 (a^4 + b^2) + 2.7}};$$

$$Y = \frac{X + \frac{a}{e^{-|X|} + 2.5} + \sin(75^{\circ})}{\sqrt[3]{|a|} + \sqrt{|a+b|} \cdot \frac{\pi}{(a+b)^4 + 1.5}}.$$

Контрольный расчет: a = 1, b = 1.

19. Даны вещественные значения параметров а, b. Вычислить Z, Y:

$$Z = 25 \cdot a^2 + b \cdot \log_2(a + 0.7);$$

$$Y = \sqrt[3]{tg^2(a \cdot Z) + \sin\left(\frac{a}{b}\right) + \cos^3(Z)}.$$

Контрольный расчет: a = 0, b = 1.

20. Даны вещественные значения параметров z, a. Вычислить С, В:

$$C = \left(\left(z + \frac{z}{z^2 + a^2} + a^3(z+2) \cdot (z^2 + a^2) - \log_2(a) \right)^5 - z^{a \cdot (z^2 + a^2)} + z \cdot \ln(z) \right)^{\frac{3}{2}};$$

$$B = (a^2 + z^2) \cdot \left(C - \lg(a^2 + z^2) \right)^{2.5}.$$

Контрольный расчет: a = 1.5, Z = 1.9.

1.2 Формализация и алгоритмизация задачи

В этом разделе требуется составить одну или несколько формул для решения приведенной ниже задачи. Для вычисления по этим формулам необходимо разработать программу, отражающую алгоритм линейного вычислительного процесса [2, 3].

- Выпуклый четырехугольник на плоскости задан координатами своих вершин. Найти его периметр.
- 2. Выпуклый четырехугольник на плоскости задан координатами своих вершин. Найти его площадь.
- Треугольник на плоскости задан координатами своих вершин. Найти его периметр.
- Треугольник на плоскости задан координатами своих вершин. Найти его площадь.
- Две прямые на плоскости заданы своими направляющими векторами и точками. Найти их точку пересечения.
- Две прямые на плоскости заданы своими нормалями и точками. Найти их точку пересечения.
- Две прямые на плоскости заданы своими уравнениями. Найти их точку пересечения.

- 8. Вектор на плоскости задан координатами своих концов. Найти его направляющие косинусы.
- Материальная точка движется по прямой траектории с постоянным ускорением. Известны ее координаты и скорость в начальный момент времени.
 Вычислить координату точки и ее скорость в заданный момент времени.
- Две прямые на плоскости заданы своими двумя точками. Найти точку их пересечения.
- 11. Треугольник на плоскости задан координатами своих вершин. Найти длины его медиан.
- 12. Треугольник на плоскости задан координатами своих вершин. Найти величины его углов.
- 13. Треугольник на плоскости задан координатами своих вершин. Найти длины его высот.
- Выпуклый четырехугольник на плоскости задан координатами своих вершин. Найти длины его диагоналей.
- 15. Две прямые на плоскости заданы двумя своими точками. Найти величину наименьшего угла, образованного этими прямыми.
- Две прямые на плоскости заданы двумя своими точками. Найти координаты единичного вектора-биссектрисы наименьшего угла, образованного этими прямыми.
- Прямоугольный треугольник задан двумя катетами. Вычислить периметр и площадь треугольника.
- 18. Вычислить площадь поверхности и объем шара с радиусом R.
- 19. Вычислить площадь поверхности и объем равнобедренной пирамиды, имеющей площадь основания S и высоту H.

2. РАЗВЕТВЛЯЮЩИЙСЯ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС

Разветвляющимся вычислительным процессом называется алгоритм (программа), в котором существует несколько альтернативных путей (ветвей) из начала в конец. Все блоки (операторы) пути выполняются только один раз в строгой, заранее определенной последовательности при условии, что выполнены условия выбора именно этого пути. Для программирования задач этого раздела необходимо использовать операторы IF ... THEN ... ELSE или CASE ... OF. Оператор GOTO использовать запрещается! Для всех заданий этого раздела следует разработать алгоритм и программу.

2.1* Программирование формул

1. По введенным с клавиатуры значениям x вычислить Y = f(x):

$$Y = \begin{cases} -x, ecnu & x < -1; \\ x^2, ecnu & -1 \le x < 1; \\ x, ecnu & x \ge 1. \end{cases}$$

2. По введенным с клавиатуры значениям x вычислить Y = f(x):

$$Y = \begin{cases} 0, & ecnu \ x < 0; \\ \sqrt{x}, & ecnu \ 0 \le x < 1; \\ x^2, & ecnu \ x \ge 1. \end{cases}$$

3. По введенным с клавиатуры значениям x вычислить Y = f(x):

$$Y = \begin{cases} \ln |x-1|, & ecnu \quad x < -1; \\ x^3, & ecnu \quad -1 \le x < 1; \\ \ln |x+1|, & ecnu \quad x \ge 1. \end{cases}$$

4. По введенным с клавиатуры значениям х вычислить Y = f(x):

$$Y = \begin{cases} \frac{x^2 + x^3}{\sin^2(x) + \cos^3(x)}, & ecnu - \pi \le x \le \pi ; \\ x^3 + x^2, & ecnu |x| > \pi . \end{cases}$$

5. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} \sin |k \cdot x|, & ecnu \quad k = 1; \\ \cos |k \cdot x|, & ecnu \quad k = 2; \\ \sqrt{|k \cdot x^2 + 1|}, & ecnu \quad k = 3; \\ k \cdot x^2, & ecnu \quad k > 3. \end{cases}$$

6. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} \ln |x+1|, & ecnu \quad k = 1; \\ \frac{\ln |x-1|}{\lg |x+1|}, & ecnu \quad k = 2; \\ e^{|x|}, & ecnu \quad k > 2. \end{cases}$$

7. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} x^4, & ecnu \ k=1; \\ 4\sqrt{x}, & ecnu \ k=2; \\ x^{-k}, & ecnu \ k>2. \end{cases}$$

8. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} \log_2 |x^2 + 1|, & ecnu \ k = 1; \\ \sqrt{|x^3 + 2 \cdot x + 5|}, & ecnu \ k = 2; \\ \sqrt{|x + 1|} + \sqrt{|x - 1|}, & ecnu \ k = 3; \\ e^{-1/(x^2 + 1)}, & ecnu \ k > 3. \end{cases}$$

9. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} x^2 + 5 \cdot x + 3, & ecnu \quad k = 1; \\ \frac{1}{x^2 + 5 \cdot x + 3}, & ecnu \quad k = 2; \\ x^4 + 5 \cdot x^2 + 3, & ecnu \quad k = 3; \\ \frac{1}{x^k + 1}, & ecnu \quad k > 3. \end{cases}$$

10. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} x^k + x + 1, & \textit{ecnu } k = 2 \textit{ unu } k = 3; \\ \frac{1}{|x+1|}, & \textit{ecnu } k = 4 \textit{ unu } k = 5; \\ 3\sqrt{\sqrt{|x+k|} + \sqrt{|x-k|}}, \textit{ecnu } k > 5 \textit{ unu } k < 3 \end{cases}$$

11. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} k \cdot x^2 \,, & \textit{если } k = 0 \textit{ или } k = 2; \\ \sqrt[k]{x} \,, & \textit{если } k = 4 \textit{ или } k = 6; \\ \frac{k \cdot x^2 + k^2 \cdot x}{|x^2 + 1|} \,, \textit{при остальных значениях } k. \end{cases}$$

12. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} k \cdot (x-1)^3, & ecnu \ k = 0 \ unu \ k = 2; \\ \frac{1}{k \cdot (x-1)^2}, & ecnu \ k = 1 \ unu \ k = 3 \ unu \ k = 5; \\ e^{-k \cdot x^2} + e^{-k^2 \cdot x}, npu \ ocmanshux \ значениях \ k. \end{cases}$$

13. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} \sin(\ k \cdot x) + \cos(\ k \cdot x), & \textit{если } \ k - \textit{четные} \ ; \\ \sqrt[3]{\sin^3(k \cdot x) + \cos^3(k \cdot x)}, & \textit{если } \ k - \textit{нечетныe} \ . \end{cases}$$

14. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} arcctg (\sin^2(k \cdot x)^{-1}), ecnu \ k-нечетное; \\ \cos(k \cdot x), ecnu \ k-четное. \end{cases}$$

15. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} \arcsin^2(k \cdot x), ecnu \ k-нечетное; \\ \arccos(k \cdot x), ecnu \ k-четное. \end{cases}$$

16. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} e^{-x}, & ecnu \ k = 1; \\ \ln|x + 5|, & ecnu \ k = 3; \\ \sin(x^2 + 5), & ecnu \ k = 5; \\ \cos(x - 60^\circ), & ecnu \ k - четное; \\ x^2 + 2x + 3, npu ocmaльных значениях k. \end{cases}$$

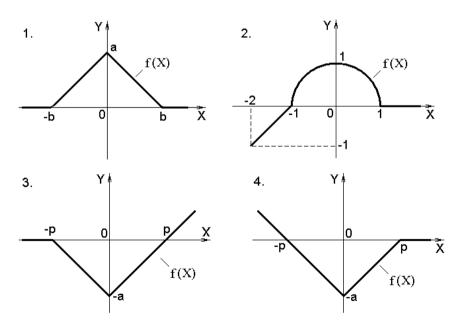
17. По введенным с клавиатуры значениям а, b вычислить X:

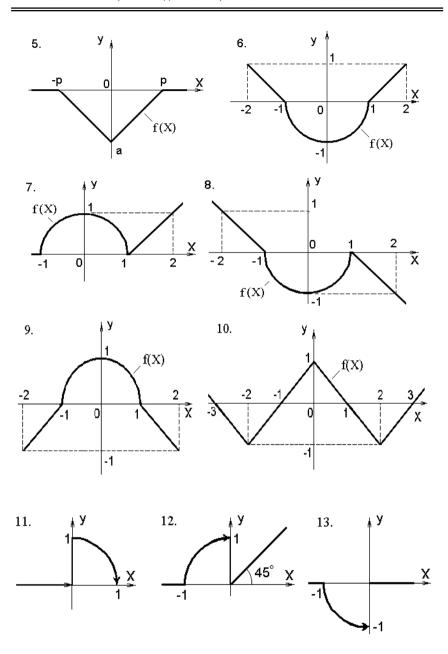
$$X = \frac{\arcsin\left(\frac{a}{a+1.2}\right) + e^{-|a+b|}}{\lg^{2}(a^{2}+b^{2}) + arcctg\left(\frac{\pi}{a^{4}+b^{2}+2.7}\right)}.$$

18. По введенным с клавиатуры значениям а, b вычислить X:

$$X = \frac{\arccos\left(\frac{\sin(75^{o}) + \cos(a \cdot b)}{2}\right) + |a| |b|}{(|a| + 0.7)^{0.2} + a^{2} + \sqrt{|a + b|}}.$$

19. По введенным с клавиатуры значениям x, k вычислить Y = f(x):


$$Y = \begin{cases} \sin |k \cdot x|, & ecnu \quad k = \overline{1, 6}; \\ \frac{\ln |x - 1|}{\ln |x + 1|}, & ecnu \quad k = \overline{7, 12}; \\ x^{-k}, & ecnu \quad k > 12. \end{cases}$$


20. По введенным с клавиатуры значениям x, k вычислить Y = f(x):

$$Y = \begin{cases} x^{k} + 5x + 3, & ecnu \quad k = \overline{1, 5}; \\ \frac{1}{|x+1|}, & ecnu \quad k = \overline{6, 10}; \\ \sqrt{|x+k|} + \sqrt{|x-k|}, & ecnu \quad k > 10 \quad unu \quad k < 1. \end{cases}$$


2.2* Формализация и алгоритмизация задачи

В заданиях 1 - 13 требуется составить формулу, которая соответствует графику функции f(X). На основании этой формулы разработать алгоритм и программу, которая по введенному значению X вычисляет и выводит на экран монитора значение Y = f(X) [2, 3].

В заданиях 14 - 20 требуется найти кратчайшее расстояние от произвольной точки M(X,Y) с координатами X и Y до контура фигуры, точка может располагаться внутри и вне геометрической фигуры. Необходимо также рассмотреть все возможные варианты и составить для них формулы. На основании этих формул разработать алгоритм и программу, которая по введенным с клавиатуры значениям X и Y вычисляет и выводит на экран монитора расстояние.

2.3 Параметрические задачи

В этом разделе предлагаются задания 1 – 17, для решения которых необходимо проанализировать проблемы (например, деление на ноль, извлечение квадратного корня из отрицательного числа, вычисление логарифма от отрицательной величины, аргумент арксинуса по модулю больше единицы и другие), возникающие при вычислении переменных X, Y при различных значениях вещественных параметров или переменных A, B, C, W. Если решение найти невозможно, то следует вместо ответа вывести на экран монитора соответствующее причине досрочного завершения расчетов сообщение. Задания 18 - 20 также относятся к параметрическим, но требуют предварительной формализации и алгоритмизации задачи.

Для всех заданий этого раздела необходимо разработать алгоритм, код программы и привести столько исходных данных и результатов расчетов (прогонов программы), чтобы проверить работоспособность всех ветвей алгоритма.

1. Найти вещественные корни квадратного уравнения X_1, X_2 , для различных значений параметров A, B, C:

$$A \cdot X^2 + B \cdot X + C = 0.$$

2. Найти вещественные корни биквадратного уравнения X_1, X_2, X_3, X_4 , для различных значений параметров A, B, C:

$$A \cdot X^4 + B \cdot X^2 + C = 0.$$

3. Ввести с клавиатуры значения переменных А, В. Вычислить Х:

$$X = \log_2 \sqrt{A^3 + A^2 \cdot B + A \cdot B^2 + B^3}$$
;

4. Ввести с клавиатуры значения переменных А, В. Вычислить X, Y:

$$X = \ln |A \cdot B - \sqrt{\sin B + \cos A}|;$$

$$Y = \frac{X^2 + \cos X + B}{X^2 - \sin X + A}.$$

5. Ввести с клавиатуры значения переменных А, В. Вычислить Х:

$$X = \sqrt[4]{\frac{A^2 + A \cdot B - B^2}{A^2 - A \cdot B + B^2}}.$$

6. Ввести с клавиатуры значения переменных А, В, С. Вычислить Х:

$$X = \frac{\sqrt{A + C \cdot \sqrt{A - B}}}{(A - C)^2}.$$

7. Ввести с клавиатуры значения переменных А, В, С. Вычислить Х, Ү:

$$X = \sqrt{\lg \sqrt{A+B} + \lg \sqrt{A-C}}$$
; $Y = X^{-A \cdot C}$.

8. Ввести с клавиатуры значения переменных А, В, С. Вычислить Х:

$$X = \frac{\arccos\left(\sin(A+15^{\circ}) + \cos(A \cdot B)\right) + C^{|b|}}{C^{2} - \sqrt{|a+b|}}.$$

9. Ввести с клавиатуры значения переменных А, В, С. Вычислить Х:

$$X = \frac{\arcsin\left(\frac{A}{B}\right) + C^{-|A+B|}}{\ln\left(arcctg\left(\frac{C}{A-B}\right)\right)}.$$

10. Ввести с клавиатуры значения переменных А, В. Вычислить Х:

$$X = \lg \left(A \cdot B - \sqrt[3]{\frac{A^2 + B^2}{A^2 - B^2}} \right).$$

Ввести с клавиатуры значения параметров A, B, C и переменной W. Вычислить X и Y:

$$X = \begin{cases} \frac{A \cdot W + B}{B \cdot W - A}, \ ecnu \mid W \mid \leq A; \\ (A + B) \cdot W, \ ecnu \mid W \mid > A. \end{cases}$$

$$Y = \sqrt{C \cdot X} \ .$$

12. Ввести с клавиатуры значения параметров A, B, C и переменной W. Вычислить X и Y:

$$X = \begin{cases} tg\left(\frac{A \cdot W - C}{\cos\left(W - A\right)}\right), \ ecnu \ W \leq B \ ; \\ \sqrt[3]{B \cdot W} \ , \qquad ecnu \ W > B \ . \end{cases}$$

$$Y = \ln\left(X + \frac{A+C}{|X|-1.5}\right).$$

13. Ввести с клавиатуры значения параметров A, B, C и переменной W. Вычислить X и Y:

$$X = \begin{cases} \ln\left(\frac{A \cdot W - B}{B \cdot W + A}\right) \ ecnu \ W \le C \ ; \\ C \cdot \left|W\right|^{B}, \qquad ecnu \ W > C \ . \end{cases}$$

$$Y = \arcsin \left(X + \frac{A+B}{X-C} \right)$$

Ввести с клавиатуры значения параметров A, B и переменных W, k. Вычислить X:

$$X = \begin{cases} \log_2{(W-A)}, & ecnu \ k=1; \\ \sqrt{W^2 + B \cdot W + A}, & ecnu \ k=2; \\ \sqrt{W+A} + \sqrt{W+B}, & ecnu \ k=3; \\ -\frac{A \cdot W}{B}, & ecnu \ k>3. \end{cases}$$

15. Ввести с клавиатуры значения параметров A, B и переменных W, k. Вычислить X:

$$X = \begin{cases} \sqrt{W^k - A \cdot W + B} \,, & ecnu \ k = \overline{1, 6}; \\ \frac{k \ln (B \cdot W)}{B \cdot |W - A|}, & ecnu \ k = \overline{7, 20}; \\ \sqrt{\ln(W + k \cdot A)} + \sqrt{\sin(W + k \cdot B)}, & ecnu \ k > 20 \ unu \ k < 1. \end{cases}$$

16. Ввести с клавиатуры значения параметров A, B и переменных W, k. Вычислить X, Y:

$$X = \begin{cases} A \cdot W + B^{k}, ecnu & k = \overline{1,3}; \\ B \cdot W - A^{k}, ecnu & k = \overline{3,5}; \\ \frac{\ln(A+B)}{W^{k} - A \cdot B}, ecnu & k > 5. \end{cases}$$

$$Y = \frac{(X + A)}{\sin(e^{-|X|} + 20^{\circ})}.$$

17. Ввести с клавиатуры значения параметров A, B, C и переменной W. Вычислить X и Y:

$$X = \begin{cases} \frac{\sin \sqrt{A \cdot W - B}}{\cos \sqrt{B \cdot W - A}}, & ecnu \mid A \cdot B \mid \leq W; \\ (A + B)^{W}, & ecnu \mid A \cdot B \mid > W. \end{cases}$$

$$Y = \log_A |C \cdot X|$$
.

- 18. В стене имеется круглое отверстие диаметром равным D. Через это отверстие желательно протащить бетонную плиту прямоугольной формы с габаритными размерами A, B, C. Требуется вывести на экран сообщения: YES если плита пройдет, NO в противном случае. Величины A, B, C, D ввести с клавиатуры.
- В прямоугольный люк с размерами А × В желательно опустить ящик с размерами сторон К, L, M. Требуется вывести на экран сообщения: YES если ящик пройдет, NO в противном случае. Величины А, В, К, L, М ввести с клавиатуры.
- 20. Окно имеет форму треугольника со сторонами A, B, C. Желательно сквозь это окно протащить цилиндрическую коробку с диаметром основания D и высотой H. Требуется вывести на экран сообщения: YES если коробка пройдет, NO в противном случае. Величины A, B, C, D, H ввести с клавиатуры.

3.* ЦИКЛИЧЕСКИЕ ВЫЧИСЛИТЕЛЬНЫЕ ПРОЦЕССЫ

Если при выполнении программы один оператор или группа операторов выполняется два и более раза, то мы имеем дело с циклическим процессом. Различают арифметические и итерационные циклы.

3.1* Арифметический цикл

Арифметическим называется циклический процесс, в котором количество повторений известно в момент входа в цикл. В языке Паскаль для реализации этого вида циклов рекомендуется использовать оператор FOR ... DO! Для всех заданий этого раздела следует разработать алгоритм и программу [2, 3].

1. По введенным с клавиатуры значениям X, m вычислить S:

$$S = \frac{2 \cdot m + 1}{\sum_{i=1, 3, 5, \dots}} i \cdot X^{-2}.$$

2. По введенным с клавиатуры значениям X и m вычислить P:

$$P = \prod_{i=1}^{m} \left(m + \frac{X}{m-i+1} \right).$$

3. По введенным с клавиатуры значениям A, B, N, M и X вычислить S:

$$S = A + \sum_{i=m}^{n} \left(X + \frac{B}{i} \right)^{2}.$$

4. По введенным с клавиатуры значениям A, B, n и X вычислить S:

$$S = A + B \sum_{i=2}^{2 \cdot n} \frac{X - A \cdot B \cdot i}{X + A \cdot B \cdot i}.$$

5. По введенным с клавиатуры значениям A, B, N, M и X вычислить S:

$$S = A + B \sum_{i=m}^{n} (-1)^{i} \frac{A + X \cdot i}{B + X \cdot i}.$$

6. Вычислить сумму S значений функции Y = f(x):

$$S = \sum_{i} \frac{x^2 - 3 \cdot x + 2}{\sqrt{2 \cdot x^2 - 1}}$$
; при $x = 1.5 + 0.1 \cdot i$; $i = \overline{1, 40}$.

7. Вычислить сумму S значений функции Y = f(x):

$$S = \sum_{i} \lg \left(\frac{x^2 + 1}{(i - 1)!} \right);$$
 при $x = -1 + 0.2 \cdot i$; $i = \overline{1, 10}$.

8. По введенным с клавиатуры значениям X вычислить произведение S:

$$S = \frac{(X-2) \cdot (X-4) \cdot (X-8) \cdot \dots \cdot (X-128)}{(X-1) \cdot (X-3) \cdot (X-7) \cdot \dots \cdot (X-127)}.$$

- 9. Для заданного с клавиатуры значения N найти (2·N)!!
- 10. Для заданного с клавиатуры значения N найти (2·N+1)!!
- 11. Найти сумму всех целых чисел, кратных 5, из отрезка [A, B].
- 12. Найти произведение всех целых чисел, кратных 7, из отрезка [A, B].
- 13. Найти сумму всех целых чисел, дающих при делении на 5 в остатке 3, из отрезка [A, B].
- 14. Найти произведение всех целых чисел, дающих при делении на 7 в остатке 4, из отрезка [A, B].
- Найти сумму квадратов всех целых чисел, дающих при делении на 5 в остатке
 дающих при делении на 5 в остатке
 дающих при делении на 5 в остатке
- 16. Найти сумму кубов всех целых чисел, дающих при делении на 7 в остатке 5, из отрезка [A, B].
- 17. Найти сумму логарифмов всех целых чисел кратных 6 из отрезка [A, B].
- Найти сумму логарифмов всех целых чисел, дающих при делении на 3 в остатке 1 из отрезка [A, B].
- Найти сумму квадратных корней из всех целых чисел, кратных 5 из отрезка [A, B].
- Найти наименьшее общее кратное трех заданных с клавиатуры натуральных чисел K, L, M. Если таковых нет, вывести на экран сообщение "NO SOLU-TION".

3.2* Итерационный цикл

Итерационным называется циклический процесс, в котором количество повторений неизвестно в момент входа в цикл. В результате работы блоков алго-

ритма, входящих в тело цикла, формируется условие завершения цикла. Если этого не происходит, то программа входит в так называемый бесконечный цикл. Чаще говорят, что программа зацикливается. Для выхода из бесконечного цикла следует использовать комбинации клавиш: Ctr + C , Alt + C , Ctr + Break , Alt + Break . В языке Паскаль для программирования этого вида циклов рекомендуются операторы REPEAT ... UNTIL или WHILE ... DO. Для работы в теле цикла и досрочного выхода из него можно использовать операторы BREAK и CONTINUE. Для всех заданий этого раздела следует разработать алгоритм и программу. Оператор GOTO использовать запрещается! [2, 3].

- 1. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} \frac{1}{n^2 \cdot (\sin(n) + 1.1)}$ с точностью до ϵ .
- 2. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} \frac{1}{n \cdot (n+A)}$ с точностью до ϵ .
- 3. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} \frac{1}{(5 \cdot n 1) \cdot (5 \cdot n + 1)}$ с точностью до ϵ .
- 4. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} \frac{2 \cdot n 1}{2^n}$ с точностью до ϵ .
- 5. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n}{(2 \cdot n^2 1)}$ с точностью до ϵ .
- 6. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} \frac{\cos\left(\frac{\pi}{n} + 30^{\circ}\right)}{n}$ с точностью до ϵ .
- 7. Найти величину $S = (1 + X)^m$ с точностью до ε , используя для вычислений формулу суммы бесконечного ряда:

$$S = 1 + m \cdot X + \frac{m \cdot (m-1)}{2!} \cdot X^2 + \frac{m \cdot (m-1) \cdot (m-2)}{3!} \cdot X^3 + \dots + \frac{m \cdot (m-1) \cdot \dots \cdot (n-m+1)}{n!} \cdot X^n + \dots$$

8. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{2 \cdot n + 1}{n^2 \cdot (n+1) \cdot (n+2)}$ с точностью до ϵ .

- 9. Найти сумму бесконечного ряда $\sum_{n=1}^{\infty} \frac{(x-1)^n \cdot \sin(x-1)^n}{n^2}$ с точностью до ε , где 2 > x > 0.
- 10. Вычислить произведение $P = \prod_{n=1}^{\infty} \sqrt[n]{2}$.

Вычисления остановить при выполнении условия $\left|\sqrt[n]{2}-1\right|<arepsilon$

11. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле $Y_n = \frac{n}{\sqrt{n^2+1} + \sqrt{2 \cdot n^2 - 1}} \; .$

Значения Y_0 вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $|Y_n - Y_{n-1}| < \varepsilon$.

- 12. Найти предел последовательности $\lim_{n \to \infty} \frac{5 \cdot n}{3 \cdot \sqrt{(n^2 + 1)} + 2 \cdot \sqrt{(n^2 1)}}$ с точностью до ε .
- 13. Найти предел последовательности $\lim_{n \to \infty} \ \frac{n^3 + 5}{2 \cdot n^3 + n^2 + 1} \ c$ точностью до ϵ .
- 14. Найти предел функции $\lim_{\delta \to \frac{\pi}{4}} \operatorname{tg}(\delta)^{\operatorname{tg}(2 \cdot \delta)}$ с точностью до ϵ .
- 15. Найти предел функции $\lim_{\gamma \to 0} \gamma \cdot \mathrm{ctg}(\gamma)$ с точностью до ϵ .
- 16. Найти предел функции $\lim_{x \to 0} \frac{tg(x) \sin(x)}{\sin^2(x)}$ с точностью до ϵ .
- 17. Найти предел функции $\lim_{\beta \ \to \ \pi} \frac{\sin \biggl(\frac{\beta \pi}{3} \biggr)}{2 \cdot (\beta \pi)} \ \text{с точностью до } \epsilon.$
- 18. Найти предел функции $\lim_{x\to 1} \frac{x^3 3 \cdot x + 2}{2 \cdot x^3 x^2 2 \cdot x + 1}$ с точностью до ϵ .
- 19. Найти предел функции $\lim_{x \to 0} \frac{e^x e^{-x} + 2 \cdot x}{x \sin(x)}$ с точностью до ϵ .

20. Найти предел функции $\lim_{\alpha \to \frac{\pi}{2}} \frac{tg(3 \cdot \alpha)}{tg(\alpha)}$ с точностью до ϵ .

3.3* Арифметические циклы с рекуррентными соотношениями

Для решения задач данного раздела следует использовать арифметический цикл, организуемый с помощью оператора FOR. Вычислительный процесс должен использовать одну или две рекуррентные формулы вида $Y_i = f(Y_{i-1}, Y_{i-2}, \ldots)$. Для всех заданий этого раздела следует разработать алгоритм и программу [2, 3].

1. Пользуясь рекуррентной формулой для заданного с клавиатуры m, вычислить Y_m , если известны Y_0 , Y_1 , а Y_m вычисляется по формуле

$$Y_m = \frac{2 \cdot Y_{m-1} + Y_{m-2}}{3}$$
; m = 2,3,4, ...

2. Пользуясь рекуррентной формулой для заданного с клавиатуры m, вычислить Y_m , если известны Y_0 , Y_1 , Y_2 ; Y_m вычисляется по формуле

$$Y_m = \sin^2(Y_{m-1}) + \cos^2(Y_{m-3}); m = 3, 4, 5, ...$$

3. Пользуясь рекуррентной формулой для заданного с клавиатуры m вычислить $S_m = \sum_{i=1}^m Y_i \; , \; \text{если известны} \; Y_0 \, , \, Y_1 \, , Y_2 \, , \, \text{а} \; Y_i \; \text{вычисляется по формулe}$

$$Y_i = \sin(Y_{i-1}) + \cos(Y_{i-3}); i = 3, 4, 5, ...$$

4. Пользуясь рекуррентной формулой для заданного с клавиатуры m, вычислить $S_m = \sum_{i=1}^m Y_i^2 \text{ при известных } Y_0, Y_1 \; ; \; Y_i \text{ вычисляется по формуле}$

$$\boldsymbol{T_i} = \sqrt{\sin(\ \boldsymbol{T_i} - 1) + \cos(\ \boldsymbol{T_i} - 2)}$$
 ; i = 2, 3, 4, ...

5. Члены последовательностей $\{X_i\}$ и $\{Y_i\}$ вычисляется по двум рекуррентным формулам. Вычислить X_{20}, Y_{20} .

$$X_{i+1} = \sqrt{\frac{X_i \cdot (Y_i + 5)^{-1}}{2}}; \ X_0 = 3.5;$$
$$Y_{i+1} = \sqrt{X_i + 1.6}; \ Y_0 = 2.2.$$

6. Пользуясь рекуррентной формулой для заданного с клавиатуры m, вычислить

$$S_m = \sum\limits_{i=1}^m \sqrt{Y_i}$$
 , если известны Y_0, Y_1, Y_2 , а $\mathbf{Y_i}$ вычисляется по формуле

$$Y_i = \lg |Y_{i-2}^2 + Y_{i-3} + 1|$$
; $i = 3, 4, 5, ...$

7. Пользуясь рекуррентной формулой для заданного с клавиатуры m, вычислить Y_m , если известны Y_0 , Y_1 , Y_2 ; Y_m вычисляется по формуле:

$$Y_m = tg^2(Y_{m-3}) + Y_{m-2}; m = 3, 4, 5, ...$$

- 8. Пользуясь рекуррентной формулой для заданного с клавиатуры m, вычислить $S_m = \sum_{i=1}^m \ln(\left|Y_i\right| + 0.5) \text{ , если известны } Y_0, Y_1, Y_2, \text{ a } Y_i \text{ вычисляется по формуле } Y_i = Y_{i-1} + Y_{i-2}^2 2 \cdot Y_{i-3}; \text{ } i = 3,4,5, \dots$
- Составьте рекуррентную формулу, используя которую для заданных с клавиатуры X и а вычислите значение Y:

$$Y = ((((((X - 0.5 \cdot a)^2 - 0.$$

 Составьте рекуррентную формулу, использую которую для заданных с клавиатуры значений X и п, вычислите значение Y:

$$Y = \frac{n^2}{2} \cdot \sqrt{\left| \sqrt{\left| \sqrt{\left| \sqrt{\left| \sqrt{\left| X + 1.5 \right|} + 1.5 \right|} + 1.5 \right|} + 1.5 \right|} + 1.5 \right|}.$$

Составьте рекуррентную формулу, используя которую для заданных с клавиатуры значений X и а, вычислите значение Y:

$$Y = \lg \left| \sin \left(\sin \left(\sin \left(\sin \left(\frac{\pi}{2} + X \right) + X \right|.$$

12. Составьте рекуррентную формулу, используя которую для заданных с клавиатуры значений X, а и р, вычислите значение Y:

$$Y = (((((X+a)^p + a)^p + a)^p + a)^p + a)^p + a)^p + a.$$

13. Составьте рекуррентную формулу, используя которую для заданных с клавиатуры значений р, n и a, вычислите значение Y:

$$Y = (((((a-p)\cdot n - p)\cdot n - p) \cdot n - p \cdot n -$$

 Составьте рекуррентную формулу, используя которую для заданного с клавиатуры значения X, вычислите значение Y:

$$Y = \frac{X}{X^2 + \cfrac{2}{X^2 + \cfrac{4}{X^2 + \cfrac{8}{X^2 + \cfrac{512}{X^2}}}}}.$$

 Составьте рекуррентную формулу, используя которую для заданного с клавиатуры значения X, вычислите значение Y:

$$Y = \frac{X^2}{1 + \frac{1}{3 + \frac{1}{5 + \frac{1}{\ddots}}}}.$$

$$109 + \frac{1}{111}$$

 Составьте рекуррентную формулу, используя которую для заданных с клавиатуры значений X и n, вычислите значение Y:

$$Y = X \cdot \sqrt[n]{3 + \sqrt[n]{6 + \dots + \sqrt[n]{96 + \sqrt[n]{99}}}} .$$

17. Составьте рекуррентную формулу, используя которую для заданного с клавиатуры значения m и X (2 > X > 1), найдите сумму S:

$$S = \sum_{n=1}^{m} (-1)^n \cdot \frac{(x-1)^{2 \cdot n}}{(2 \cdot n)!!}.$$

18. Составьте рекуррентную формулу, используя которую для заданного с клавиатуры значения m и X (2 > X > 1), найдите сумму S:

$$S = \sum_{n=0}^{m} (-1)^{n+1} \cdot \frac{(x-1)^{2\cdot n-1}}{(2n+1)!!}$$

19. Составьте рекуррентную формулу, используя которую для заданного с клавиатуры значения m и X (3 > X > 0), найдите сумму S:

$$S = \sum_{n=1}^{m} \frac{2^{X}}{n!}.$$

20. Сторона правильного вписанного многоугольника с удвоенным числом сторон выражается через A_n и R рекуррентной формулой

$$A_{2n} = \sqrt{2 \cdot R^2 - 2 \cdot R \cdot \sqrt{R^2 - \frac{A_n^2}{4}}} \; , \quad \mathbf{A}_4 = \sqrt{2} \cdot R \; .$$

Вычислить сторону А₆₄.

3.4* Итерационные циклы с рекуррентными соотношениями

При решении задач данного раздела следует использовать итерационный цикл. Для реализации этого вида циклов рекомендуются операторы REPEAT ... UNTIL или WHILE ... DO. Вычислительный процесс должен использовать одну или две рекуррентные формулы вида $Y_i = f(Y_{i-1}, Y_{i-2}, ...)$. Для всех заданий этого раздела следует разработать алгоритм и программу [2, 3].

1. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = 0.25 \cdot \sin(Y_{n-1}) + 0.5 \cdot \sin(Y_{n-2}); \ n = 2, 3, 4, \dots$$

Значения $Y_0,\, {\rm Y}_1$ вводятся с клавиатуры. Вычисления прекратить при выполнении условия $|Y_n-Y_{n-1}|<\varepsilon$.

2. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = 0.2 + 0.1 \cdot \sin(Y_{n-1}); n = 1, 2, 3, \dots$$

Значение Y_0 вводится с клавиатуры. Вычисления прекратить при выполнении условия $|Y_n-Y_{n-1}|<\varepsilon$.

3. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = 0.1 \cdot tg(Y_{n-1}) + 0.3 \cdot tg(Y_{n-3})$$
; $n = 3, 4, 5, ...$

Значения $Y_0,\, {\rm Y}_1,\, {\rm Y}_2\,$ вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $|Y_n-Y_{n-1}|<\varepsilon$.

4. Вычислить предел последовательности $\{Y_n\}$ при $n\to\infty$, где $Y_0=1$, а Y_n вычисляется по формуле

$$Y_n = \frac{1}{1 + Y_{n-1}}$$
; n = 1, 2, 3,

Значение Y_0 вводится с клавиатуры. Вычисления прекращаются при выполнении условия $\left|Y_n-Y_{n-1}\right|<\varepsilon$.

5. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = 0.352 \cdot Y_{n-1} + \cos\left(\frac{\pi}{2} + Y_{n-2}\right); \ n = 2, 3, 4, \dots$$

Значения $Y_0,\, {
m Y}_1$ вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $|Y_n-Y_{n-1}|<arepsilon$.

6. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} o \infty$, где Y_n вычисляется по формуле

$$Y_n = \frac{1}{\sqrt{12 + Y_{n-1}^2 + Y_{n-2}^2}}; \ n = 2, 3, 4, \dots$$

Значения $Y_0,\, {\rm Y}_1\,$ вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $|Y_n-Y_{n-1}|<\varepsilon$.

7. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = \frac{1}{\sqrt{10 + \sqrt{Y_{n-2}^2 + Y_{n-3}^2}}}; \ n = 3, 4, 5, ...$$

Значения $Y_0,\, Y_1,\, Y_2\,$ вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $\left|Y_n-Y_{n-1}\right|<\varepsilon$.

8. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = \frac{1}{\sqrt{1 + \sin^2 Y_{n-1} + \sin^2 Y_{n-2}}}; \ n = 2, 3, 4, \dots$$

Значения Y_0, Y_1 вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $|Y_n - Y_{n-1}| < \varepsilon$.

9. Вычислить предел последовательности $\{Y_n\}$ при $\mathbf{n} \to \infty$, где Y_n вычисляется по формуле

$$Y_n = \frac{Y_{n-2} + 0.5 \cdot Y_{n-3}}{Y_{n-2}^2 + 2 \cdot Y_{n-3}^4 + 1.5}; \ n = 3, 4, 5, ...$$

Значения $Y_0,\, Y_1,\, Y_2\,$ вводятся с клавиатуры. Вычисления прекращаются при выполнении условия $\left|Y_n-Y_{n-1}\right|<\varepsilon$.

10. Последовательность функций $Y_n = Y_n(X)$, где $0 \le X \le 1$ определяется следующим образом:

$$Y_1 = \frac{X}{2}$$
; $Y_n = \frac{1}{2} \cdot (X + Y_{n-1}^2)$; $n = 2, 3, .4, ...$

При заданном X найти предел последовательности, принимая за таковой значение Y_n , удовлетворяющее условию $\left|Y_n - Y_{n-1}\right| < \varepsilon$.

11. Последовательность функций $Y_n = Y_n(X)$, где 0 < X определяется следующим образом:

$$Y_1 = X$$
; $Y_n = Y_{n-1} \cdot (2 - X \cdot Y_{n-1})$; $n = 2, 3, .4, ...$

При заданном X найти предел последовательности, принимая за таковой значение Y_n , удовлетворяющее условию $\left|Y_n-Y_{n-1}\right|<\varepsilon$.

12. Пользуясь рекуррентной формулой, найти сумму S бесконечного ряда с точностью до ϵ .

$$S = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(x-1)^{2 \cdot n}}{(2n)!!}.$$

Пользуясь рекуррентной формулой, найти сумму S бесконечного ряда с точностью до є.

$$S = \sum_{n=0}^{\infty} (-1)^{n+1} \cdot \frac{(x-1)^{2\cdot n-1}}{(2n+1)!!}.$$

14. Пользуясь рекуррентной формулой, найти сумму S бесконечного ряда с точностью до ε .

$$S = \sum_{n=1}^{\infty} \frac{(x-1)^n}{(n)!}.$$

15. Пользуясь рекуррентной формулой, найти сумму S бесконечного ряда с точностью до ε .

$$S = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{(x-1)^{2 \cdot n}}{2 \cdot n} .$$

16. Пользуясь рекуррентной формулой, найти сумму S бесконечного ряда с точностью до ϵ .

$$S = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{x^{2-n}}{n \cdot (n+1) \cdot (n+2)}.$$

17. Пользуясь рекуррентной формулой, найти сумму S бесконечного ряда с точностью до ε .

$$S = 1 - \sum_{n=1}^{\infty} (-1)^n \cdot \frac{(2n-1)!!}{(2n)!!} \cdot X^n.$$

18. Найти предел произведения $P = \prod_{n=1}^{\infty} \left(1 + \frac{1}{Y_n}\right)$ для последовательности $\{Y_n\}$,

пользуясь рекуррентной формулой

$$Y_1 = 1$$
; $Y_n = n \cdot (Y_{n-1} + 1)$; $n = 2, 3, 4, ...$

Вычисления закончить при выполнении условия $\frac{1}{Y_n} < \varepsilon$.

19. Вычислить $\sqrt[k]{A}$ - корень k-ой степени из положительного числа A, пользуясь последовательным приближением

$$X_0 = A; X_n = \frac{k-1}{k} \cdot X_{n-1} + \frac{A}{k \cdot X_{n-1}^{k-1}}; n = 1, 2, 3, ...$$

За корень принять такое X_n , при котором $\left|X_n - X_{n-1}\right| < \varepsilon$.

20. Для приближенного решения уравнения Кеплера

$$X - q \cdot \sin(X) = m, \quad 0 < q < 1,$$

полагают
$$X_0=m, \mathbf{X_1}=m+q\cdot\sin(X_0),\ldots,\mathbf{X_n}=m+q\cdot\sin(X_{n-1}),\ldots$$

При заданном m найти решение уравнения Кеплера, принимая за него такое X_n , при котором $\left|X_n - X_{n-1}\right| < \varepsilon$.

4. ПОЛЬЗОВАТЕЛЬСКИЕ АЛГЕБРАИЧЕСКИЕ ФУНКЦИИ

4.1* Применение функции в линейных и разветвляющихся вычислительных процессах

В этом разделе для вычисления по приведенным ниже формулам величины Z необходимо разбить вычислительный алгоритм на два блока - основную программу и пользовательскую функцию. Описать алгоритмы с помощью двух структурограмм - основной программы и функции. Составить программу и для введенных с клавиатуры значений параметров рассчитать величину Z [...].

1. Вычислить Z:

$$Z = (a^2 \cdot sign(a + b) + b^2 \cdot sign(a - b)) \times sign(a \cdot b);$$
 где
$$sign(u) = \begin{cases} -1, & u < 0; \\ 0, & u = 0; \\ 1, & u > 0. \end{cases}$$

2. Вычислить Z:

$$Z = \frac{\max(a, a+b) + \max(a+b \cdot c, 2 \cdot a + c)}{\max(\left|b\right|^a, a \cdot b + c, 5.356)}.$$

При вычислениях использовать пользовательскую функцию вида $F = \max(u, v)$.

3. Вычислить Z:

$$Z = f(a,b) + \min \left(f^{2}(a-b, a \cdot b), f(a-b, a + b) + f\left(1, \frac{a}{b}\right) \right);$$
$$f(u, v) = \frac{u}{1+v^{2}} + \frac{v}{u^{2}+1} - (u-v)^{2}.$$

4. Вычислить Z:

где

$$Z = f(\sin^2(a), b - 1) + f(\sin(a) - \cos(a), b^2 - 1) + 1.2;$$

где
$$f(u, v) = \begin{cases} u + \sin v, & u \ge 0; \\ u + \cos v, & u < 0, v > 0; \\ |u + v|, & u < 0, v \le 0. \end{cases}$$

5. Вычислить Z:

$$Z = f(\sqrt{|x|} + y, x) + f(e^{x}, |y|);$$

где
$$f(\mathbf{u}, \mathbf{v}) = \begin{cases} \ln \left| u \right| + \ln \left| \mathbf{v} \right|, u * \mathbf{v} > 0; \\ \left| u + \mathbf{v} \right|, u * \mathbf{v} \le 0. \end{cases}$$

6. Вычислить Z:

$$Z = f(\sqrt{|x|} + 1.1 - y) + f(|x| - |y|, |x - y|);$$

$$e \qquad f(u, v) = \begin{cases} u + 2 * v, & u \ge 0; \\ u + v, & u \le -1; \\ u^2 + 2v + 1, -1 < u < 0. \end{cases}$$

7. Вычислить Z:

$$Z = f(\sin(x) + \cos(y), x + y) + f(\sin^{3}(x) + \cos^{3}(x), x^{3} + y^{3});$$

$$f(u, v) = \begin{cases} u + v, & u > 1; \\ u - v, & 0 \le u \le 1; \\ v - u, & u < 0 \end{cases}$$

8. Вычислить Z:

$$Z = f(\sin |x| + \cos |x|, |x|) + f(\sqrt{|x|}, \sin |x|);$$
где
$$f(u, v) = \begin{cases} |u| \cdot |v|, u > 0; \\ u^2, & u \le 0, v > 0; \\ v^2, & u \le 0, v \le 0. \end{cases}$$

Вычислить Z :

где
$$f(u, v) = \begin{cases} u + v, & u > 0, v > 0; \\ |u + v|, & u > 0, v \le 0; \\ |u - v|, & u \le 0, v > 0; \\ |u| + |v|, & u \le 0, v \le 0. \end{cases}$$

 $Z = f(\sin|x + y|, \cos|x + y|) + 2 \cdot f(|x + y|, |x - y|);$

10. Вычислить Z:

$$Z = f(\sqrt[3]{|x|+|y|}, \sqrt{|x+y|}) + f(\lg(|x|+|y|), \lg(|x+y|));$$

где
$$f(\mathbf{u}, \mathbf{v}) = \begin{cases} u \cdot v, & u > 0, v > 0; \\ |u + v|, & u > 0, v \le 0; \\ |u| + u \cdot v, & u \le 0, v > 0; \\ |v| + u \cdot v, & u \le 0, v \le 0. \end{cases}$$

11. Вычислить Z:

$$Z = \ln |f^2(a \cdot b, a + b, a - b) + f^2(2 \cdot a, 2 \cdot b, a \cdot b)|;$$

где
$$f(x, y, z) = \begin{cases} x \cdot y \cdot z, & x \cdot y \cdot z > 0; \\ x + y + z, & x \cdot y \cdot z < 0; \\ x^2 + y^2 + z^2, & x \cdot y \cdot z = 0. \end{cases}$$

12. Вычислить $Z: Z = f(|a| + |b|, |a+b|) - 2 \cdot f(|a| - |b|, |a \cdot b|);$

где
$$f(u, v) = \begin{cases} u^2 + v^2, & u \cdot v > 0; \\ \cos(u) + \cos(v), u \cdot v < 0; \\ u + v, & u \cdot v = 0. \end{cases}$$

13. Вычислить Z : $Z = f(\sin(a), \cos(a)) \cdot \sqrt{|f(a^2, e^a)|}$;

где
$$f(u, v) = \begin{cases} \arcsin(u+v), u+v > 0; \\ \arccos(u+v), u+v < 0; \\ u^2 + v^2, \qquad u+v = 0. \end{cases}$$

14. Вычислить $Z: Z = f(\sqrt{a^2 + b^2}, \sqrt{\left|a^2 - b^2\right|}) \cdot f(\sqrt{\left|a + b\right|}, \sqrt{\left|a - b\right|});$

где
$$f(\mathbf{u}, \mathbf{v}) = \begin{cases} |u| + |v|, & u \cdot v < 0; \\ u^2 + v^2, & u \cdot v > 0; \\ e^u + e^v, & u \cdot v = 0. \end{cases}$$

15. Вычислить Z : Z = $\sqrt{f(\sqrt{|x|+|y|},\sqrt{|x\cdot y|})\cdot f(\ln(|x|+|y|),\ln|x\cdot y|)}$;

где
$$f(u, v) = \begin{cases} \sin(u) \cdot \sin(v), & u + v > 0; \\ \cos(u) \cdot \cos(v), u + v < 0; \\ u^2 + v^2, & u + v = 0. \end{cases}$$

Вычислить Z :

$$Z = f(e^{\frac{1.5}{|x+y|}}, e^{\frac{2}{|x|+|y|}}) + 2 \cdot f(\log_2|x+y|, \log_2|x\cdot y|);$$

$$f(u, v) = \begin{cases} \sqrt{u^2 + v^2}, & u+v > 0; \\ \frac{1}{u+v}, & u+v < 0; \\ u \cdot v, & u+v = 0. \end{cases}$$

Вычислить Z :

$$Z = f(f(\sqrt{|x|+|y|}, \sqrt{|x \cdot y|}), x + y) \cdot f(\lg(|x|+|y|), f(\lg|x \cdot y|, x \cdot y));$$

где
$$f(u, v) = \begin{cases} \sin^2(u \cdot v), & u + v > 0; \\ \cos^2(u \cdot v), & u + v < 0; \\ u^2 - v^2, & u + v = 0. \end{cases}$$

18. Вычислить Z:

$$Z = \sin(f(f(a + b, a - b)), f(a^2, b^2)));$$

где
$$f(u, v) = \begin{cases} u^2 + v^2, u + v < 0; \\ u^2 - v^2, u + v > 0 \end{cases}$$

Вычислить Z :

$$Z = \cos(f(f(a^2-1, b), f(a-b, b)) + f(a^2, b^2 + 0.2));$$
 где
$$f(u, v) = \begin{cases} |u+v|, u \cdot v \le 0; \\ |u-v|, u \cdot v > 0. \end{cases}$$

Вычислить Z :

$$Z = arctg(f(sin^{2}(a), cos^{2}(a)) + f(2 \cdot sin(a), 2 \cdot cos(a)));$$

где
$$f(\mathbf{u}, \mathbf{v}) = \begin{cases} u + v, & u \ge 0; \\ |v|, & u < 0, v > 0; \\ v^2, & u < 0, v \le 0. \end{cases}$$

4.2 Использование функции в циклических процессах

В этом разделе необходимо разработать формулу для функции, с помощью которой и решить поставленную задачу. Разбить алгоритм на две части - на основную программу и пользовательскую функцию. Необходимо описать алгоритмы основной программы и функции с помощью двух структурограмм. Составить программу и для введенных с клавиатуры значений параметров рассчитать требуемые величины.

1. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{b \cdot n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}, \quad n \to \infty.$$

Величину b ввести с клавиатуры. Вычисления остановить при выполнении условия $\left|A_n-A_{n-1}\right|<\varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

2. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{n^3 + 2}{2 \cdot n^3 - n^2 + 3}, \ n \to \infty.$$

Вычисления остановить при выполнении условия $\left|A_n - A_{n-1}\right| < \varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

3. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{b \cdot n^2 + 2}{(n-1) \cdot (n+3)}, n \to \infty.$$

Величину b ввести с клавиатуры. Вычисления остановить при выполнении условия $\left|A_n-A_{n-1}\right|<\varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

4. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{\sqrt[3]{n^3 + 2}}{2 \cdot n + \sqrt{n^2 + 3}}, n \to \infty.$$

Вычисления остановить при выполнении условия $\left|A_n - A_{n-1}\right| < \varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

5. Найти предел функции A(x), которая вычисляется по формуле

$$\lim_{x\to\infty}(x-\sqrt{x^2+5\cdot x}).$$

Вычисления остановить при выполнении условия $|A(n) - A(n-1)| < \varepsilon$. При составлении программы A(x) реализовать в виде пользовательской функции A(n).

6. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{1}{n^2} \cdot (1 + 2 + 3 + ... + (n-1)), \ n \to \infty.$$

Вычисления остановить при выполнении условия $\left|A_n - A_{n-1}\right| < \varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

7. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{1}{n} \cdot \left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}} + \sqrt{1 + \frac{3}{n}} + \dots + \sqrt{1 + \frac{n}{n}} \right), \ n \to \infty \ .$$

Вычисления остановить при выполнении условия $\left|A_n - A_{n-1}\right| < \varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

8. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{1}{n} \cdot \left(\sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2 \cdot \pi}{n}\right) + \sin\left(\frac{3 \cdot \pi}{n}\right) + \dots + \sin\left(\frac{(n-1) \cdot \pi}{n}\right) \right), \ n \to \infty.$$

Вычисления остановить при выполнении условия $\left|A_n - A_{n-1}\right| < \varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

9. Найти предел последовательности A_n , которая вычисляется по формуле

$$A_n = \frac{1}{n^2} \cdot \left(\cos^2\left(\frac{\pi}{n}\right) + \cos^2\left(\frac{2 \cdot \pi}{n}\right) + \cos^2\left(\frac{3 \cdot \pi}{n}\right) + \dots + \cos^2\left(\frac{(n-1) \cdot \pi}{n}\right)\right), n \to \infty.$$

Вычисления остановить при выполнении условия $\left|A_n - A_{n-1}\right| < \varepsilon$. При составлении программы A_n реализовать в виде функции A(n).

- 10. С клавиатуры ввести числа A, B, C и D. Для каждой тройки этих чисел, соответствующих сторонам треугольника, вычислить площадь, если такой треугольник можно построить. Для проверки чисел и вычисления площади использовать функцию вида S=S(X1,X2,X3). Если треугольник построить нельзя, то принять S=0.
- 11. С клавиатуры ввести числа A, B, C. Найти медианы треугольника со сторонами A, B, C, используя следующую формулу длина медианы L_A , проведенной к стороне A равна $0.5 \cdot \sqrt{2 \cdot B^2 + 2 \cdot C^2 A^2}$. Требуется найти медианы треугольника, который можно сформировать из медиан исходного треугольника. Для определения длин медиан использовать функцию вида L = L(X1, X2, X3).
- 12. Вычислить интеграл функции $F(x) = \frac{1}{1+x^2}$ по формуле Симпсона:

$$\int_{x_0}^{x_0} F(x) dx \cong \frac{h}{3} \cdot \sum_{i=0,2,4,\dots}^{n-2} (F(x_0 + i \cdot h) + 4 \cdot F(x_0 + (i+1) \cdot h) + F(x_0 + (i+2) \cdot h)),$$

где
$$x_0 = 0$$
; $x_n = 1$; $h = \frac{x_n - x_0}{n}$; $n = 100$.

13. Вычислить интеграл функции $F(x) = e^{a \cdot x} \cdot \sin(b \cdot x)$ по формуле трапеций:

$$\int_{x_0}^{x_n} F(x) dx \cong \frac{h}{2} \cdot \sum_{i=0}^{n-1} (F(x_0 + i \cdot h) + F(x_0 + (i+1) \cdot h)),$$

где
$$x_0 = 0$$
; $x_n = \pi$; $h = \frac{x_n - x_0}{n}$; $n = 1200$.

14. Вычислить число сочетаний C_n^m из n по m, где m и n натуральные числа (m \leq n), с помощью формулы

$$Y = C_n^m = \frac{n!}{m! \times (n-m)!}.$$

Для определения К! использовать рекурсивную функцию.

15. Вычислить величину Ү:

$$Y = \frac{(2 \cdot n + 1)!! \times (2 \cdot m + 1)!!}{(2 \cdot (m + n) + 1)!!},$$

где m и n неотрицательные целые числа ($m \le n$).

Для определения $(2 \cdot K + 1)!!$ использовать рекурсивную функцию.

16. Вычислить величину Ү:

$$Y = \frac{(2 \cdot n)!!}{(2 \cdot m)!! \times (2 \cdot n - 2 \cdot m)!!},$$

где m и n неотрицательные целые числа $(m \le n)$.

Для определения $(2 \cdot K)!!$ использовать рекурсивную функцию.

17. Вычислить величину У для заданных с клавиатуры значений х и п:

$$Y = \sec(x^{2} + 0.1) + \sec(\sec(x^{2} + 0.1)) + \dots + \sec(\sec(\dots \sec(x^{2} + 0.1) \dots)),$$

$$n - pa3$$

где
$$\sec(u) = \frac{1}{\cos(u)}$$
.

Для вычисления Y использовать рекурсивную функцию вида F = F(x, n).

- 18. Последовательность чисел Фибоначчи $\{F_n\}$ определяется рекуррентным соотношением $F_{n+1}=F_n+F_{n-1}$, причем $F_0=F_1=1$. По заданному с клавиатуры n, найти значение F_n . В расчетах использовать рекурсивную функцию вида F(n+1)=F(n,n-1).
- 19. Вычислить значение полинома Чебышева $Y=T_n(x)$, где n и x вводятся с клавиатуры. В расчетах следует использовать рекурсивную функцию T(x,n+1)=T(x,n,n-1), соответствующую рекуррентной зависимости $T_{n+1}(x)=2\cdot x\cdot T_n(x)-T_{n-1}(x)$, причем $T_0(x)=1$, $T_1(x)=x$.
- 20. По заданным с клавиатуры параметрам а и в вычислить Z:

$$Z = \frac{2.8 \cdot f(0.25) + 2 \cdot f(1+a)}{7.5 - f(a \cdot b - 0.5)} ,$$

где

$$f(x) = \frac{\frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!}}{\frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!}}.$$

4.3* Табуляция функции

В табл. 1 представлены варианты, включающие исходные данные для табуляции: F(x) - табулируемая функция; [A,B] - диапазон изменения аргумента; n - количество точек; h - шаг табуляции. Эти параметры вводятся в программу с клавиатуры. Результатом является таблица, содержащая три столбца: i - текущая точка расчета, X_i - значение аргумента, Y_i — значение функции.

Таблица 1.

№	Вид функции	Диапазон изменения аргумента					
	Y = F(x)	A	В	n	h		
1	sin(x)/x	- π/2	$\pi/2$	21	-		
2 3	$x^2 \cdot \cos(0.5 \cdot x)$	0	$3\pi/2$	21	-		
	arcsin(2·x)	- 0.5	0.5	21	-		
4	arccos(x)	- 1	1	21	-		
5	arctg(1/x)	$-3 \cdot \pi$	$3 \cdot \pi$	21	-		
6	arcctg(1 x)	$-3 \cdot \pi$	$3 \cdot \pi$	21	-		
7	$2^x \cdot \lg(x)$	0	2	21	-		
8	tg(x)	- π/2	$\pi/2$	21	-		
9	cosec(x)	0	π	21	-		
10	sec(x)	- π/2	$\pi/2$	21	-		
11	$\sqrt[3]{x^3+2}$	- 3	5	-	0.4		
12	$\frac{10}{1-x^2}$	- 2.5	2.5	-	0.5		

13	$\frac{x-3}{x^2+2}$	-4	4	-	0.5
14	$\frac{e^x - e^{-x}}{2}$	-2	2	-	0.2
15	$\frac{e^x + e^{-x}}{e^x - e^{-x}}$	-3	3	-	0.5
16	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	-3	3	-	0.5
17		0	10	-	0.5
18	$\sqrt[3]{x \cdot \cos(x)}$ $x \cdot e^{-x^2}$	-2	2	-	0.2
19	$x \cdot \cos\left(\frac{1}{x}\right)$	-1	4	-	0.25
20	$\frac{1}{2} \cdot \ln \left(\frac{1+x}{1-x} \right)$	-1	1	-	0.1

Примечания.

- 1. При создании программы F(x) оформить в виде отдельной функции.
- 2. Для расчетов использовать следующие формулы:

$$h = \frac{B-A}{n-1}$$
; $X_i = A+i \cdot h$; $Y_i = F(X_i)$; $i = 0, 1, 2, ..., n-1$.

- 3. Учесть и программно обработать особые точки, в том числе возможные разрывы функции F(x).
- 4. По указанию преподавателя табулировать не только функцию, но и ее первую производную F'(x). Вычисление производной можно осуществлять либо по аналитической формуле, либо с помощью формул численного дифференцирования [21].

5. ИНТЕРПОЛИРОВАНИЕ ФУНКЦИИ

В табл. 3 приведены значения функции, заданной в форме таблицы { $X_i,Y_i/i=0,1,2,3$ } для каждого из вариантов. Цель лабораторной работы: практическое освоение методов линейной интерполяции и интерполяции полиномом Лагранжа [21]. Требуется найти приближение функции $\overline{F}(X_j^*)$ для трех значений аргумента { $X_i^*/j=\overline{1,3}$ }.

Отчет по лабораторной работе должен включать следующие разделы:

- 1. Математическая формулировка задачи построения аналитического приближения таблично заданной функции и вычисления ее значения в точках { $X_i^*/j=\overline{1,3}$ }.
- Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
- 4. Таблица результатов вычислений функции в указанных в соответствующем варианте точках $\{X_i^*/j=\overline{1,3}\}$.

Метод интерполяции \ аргументы	X_1^*	X_2^*	X_3^*
Линейная интерполяция			
Полином Лагранжа			

5. График на миллиметровке. На графике отметить: узлы интерполяции, линейное приближение, приближение полиномом и найденные значения функции.

Таблица 3

Вариант	I	X_{i}	$Y_i = F(X_i)$	Аргументы X_{j}^{*}
0	0	0,400	1,889	0,550
	1	0,700	2,144	1,100
	2	1,600	2,499	2,200
	3	3,100	1,542	
1	0	0,400	1,889	0,410
	1	0,420	1,908	0,450
	2	0,480	1,962	0,510
	3	0,580	2,048	
2	0	0,400	1,889	0,415
	1	0,430	1,917	0,495
	2	0,520	1,997	0,610
	3	0,670	2,121	

Продолжение таблицы 3

			I	
Вариант	I	X_{i}	$Y_i = F(X_i)$	Аргументы X_{j}^{*}
3	0	0,400	1,889	0,420
	1	0,440	1,926	0,510
	2	0,560	2,031	0,620
	3	0,760	2,189	
4	0	0,400	1,889	0,425
	1	0,450	1,935	0,510
	2	0,600	2,065	0,720
	3	0,850	2,251	
5	0	0,400	1,889	0,430
	1	0,460	1,944	0,510
	2	0,640	2,097	0,810
	3	0,940	2,308	
6	0	0,400	1,889	0,435
	1	0,470	1,953	0,510
	2	0,680	2,129	0,812
	3	1,030	2,357	
7	0	0,400	1,889	0,440
	1	0,480	1,962	0,621
	2	0,720	2,159	0,945
	3	1,120	2,400	
8	0	0,400	1,889	0,445
	1	0,490	1,971	0,655
	2	0,760	2,189	1,055
	3	1,210	2,436	
9	0	0,400	1,889	0,450
	1	0,500	1,979	0,745
	2	0,800	2,217	0,115
	3	1,300	2,462	
10	0	0,400	1,889	0,455
	1	0,510	1,988	0,745
	2	0,840	2,245	1,155
	3	1,390	2,484	
11	0	0,400	1,889	0,460
	1	0,520	1,997	0,745
	2	0,880	2,271	1,255
	3	1,480	2,496	

Продолжение таблицы 3

Вариант	I	X_{i}	$Y_i = F(X_i)$	Аргументы X_{j}^{*}
12	0	0,400	1,889	0,465
	1	0,530	2,006	0,754
	2	0,920	2,296	1,255
	3	1,570	2,500	
13	0	0,400	1,889	0,470
	1	0,540	2,014	0,755
	2	0,960	2,319	0,135
	3	1,660	2,496	
14	0	0,400	1,889	0,475
	1	0,550	2,023	0,755
	2	1,000	2,341	1,364
	3	1,750	2,484	
15	0	0,400	1,889	0,480
	1	0,560	2,031	0,865
	2	1,040	2,362	1,468
	3	1,840	2,464	
16	0	0,400	1,889	0,485
	1	0,570	2,040	0,859
	2	1,080	2,382	1,687
	3	1,930	2,436	
17	0	0,400	1,889	0,490
	1	0,580	2,048	0,955
	2	1,120	2,400	1,645
	3	2,020	2,401	
18	0	0,400	1,889	0,495
	1	0,590	2,056	0,855
	2	1,160	2,417	1,755
	3	2,110	2,358	
19	0	0,400	1,889	0,500
	1	0,600	2,065	1,055
	2	1,200	2,432	1,875
	3	2,200	2,308	

Продолжение таблицы 3

Вариант	I	X_{i}	$Y_i = F(X_i)$	Аргументы X_{j}^{*}
20	0	0,400	1,889	0,505
	1	0,610	2,073	0,845
	2	1,240	2,446	1,985
	3	2,290	2,252	
21	0	0,400	1,889	0,510
	1	0,620	2,081	0,895
	2	1,280	2,458	0,1955
	3	2,380	2,190	
22	0	0,400	1,889	0,515
	1	0,630	2,089	1,054
	2	1,320	2,469	2,255
	3	2,470	2,122	
23	0	0,400	1,889	0,520
	1	0,640	2,097	0,115
	2	1,360	2,478	2,255
	3	2,560	2,049	
24	0	0,400	1,889	0,525
	1	0,650	2,105	0,995
	2	1,400	2,485	2,235
	3	2,650	1,972	
25	0	0,400	1,889	0,530
	1	0,600	2,113	1,125
	2	1,440	2,491	2,355
	3	2,740	1,891	

В табл. 3 приняты следующие обозначения: I — номер узла, X_i - точка с номером I на оси $X,\ Y_i$ - значение неизвестной функции $F(X_i)$ в точке X_i . Величина X_j^* определяет набор точек (j=1,2,3), для которых решается задача интерполяции.

6. ВЫБОР И НАХОЖДЕНИЕ ПАРАМЕТРОВ ЭМПИРИЧЕСКОЙ ФОРМУ-ЛЫ

В этой лабораторной работе изучаются приемы построения эмпирических формул $Y = f_i(A,B,X)$ для нелинейных зависимостей. Для каждого из вариантов заданий (см. табл. 4) требуется выбрать одну (или несколько) из эмпирических формул, приведенных в [17,21], и найти оптимальные (по критерию наименьшей суммы квадратов отклонения Φ) для нее параметры \mathbf{A} и \mathbf{B} . Отчет по лабораторной работе должен включать следующие разделы:

- 1. Математическая формулировка задачи выбора эмпирической зависимости и нахождения оптимальных параметров А и В.
- 2. Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
- 4. Таблица результатов вычислений в соответствии со следующим шаблоном.

№ п/п	Эмпирическая формула	A	В	Φ	Примечание
1	$Y = A \cdot X + B$				

5. График на миллиметровке. На графике отметить: известные значения (X_i,Y_i) и график найденной эмпирической функции.

Таблица 4

Вариант	1	2	3	4	5	6
X			Значение фу	ункции Y(X)		
0.5	2.000	0.276	0.500	1.761	0.054	4.000
0.6	2.020	0.294	0.495	1.798	0.076	3.367
0.7	2.040	0.313	0.490	1.829	0.102	2.914
0.8	2.060	0.334	0.485	1.855	0.131	2.575
0.9	2.080	0.356	0.481	1.879	0.164	2.311
1.0	2.100	0.380	0.476	1.900	0.200	2.100
1.1	2.120	0.405	0.472	1.919	0.240	1.927
1.2	2.140	0.432	0.467	1.936	0.283	1.783
1.3	2.160	0.461	0.463	1.952	0.329	1.662
1.4	2.180	0.491	0.459	1.967	0.379	1.557
1.5	2.200	0.524	0.455	1.981	0.432	1.476
1.6	2.220	0.559	0.450	1.994	0.488	1.387
1.7	2.240	0.596	0.446	2.006	0.548	1.318
1.8	2.260	0.653	0.442	2.018	0.611	1.256
1.9	2.280	0.677	0.439	2.028	0.677	1.200
2.0	2.300	0.722	0.435	2.039	0.746	1.150

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

Продолжение таблицы 4

Вариант	7	8	9	10	11	12
X			Значение фу	нкции Y(X)	1	
0.5	0.552	0.526	1.423	0.123	3.800	0.263
0.6	0.550	0.515	1.496	0.168	3.233	0.309
0.7	0.580	0.505	1.557	0.218	2.829	0.354
0.8	0.612	0.495	1.611	0.274	2.529	0.396
0.9	0.645	0.485	1.652	0.334	2.289	0.437
1.0	0.680	0.476	1.700	0.400	2.100	0.476
1.1	0.717	0.467	1.738	0.470	1.945	0.514
1.2	0.756	0.459	1.773	0.545	1.817	0.550
1.3	0.797	0.450	1.805	0.625	1.708	0.586
1.4	0.841	0.442	1.835	0.709	1.614	0.619
1.5	0.887	0.435	1.862	0.797	1.533	0.652
1.6	0.935	0.427	1.888	0.889	1.462	0.684
1.7	0.986	0.420	1.912	0.986	1.400	0.714
1.8	1.040	0.413	1.935	1.086	1.344	0.744
1.9	1.096	0.407	1.957	1.191	1.295	0.772
2.0	1.156	0.400	1.977	1.300	1.250	0.800

Продолжение таблицы 4

Вариант	13	14	15	16	17	18
X			Значение фу	нкции Y(X))	
0.5	0.556	1.084	0.212	3.600	0.278	1.800
0.6	0.538	1.194	0.279	3.100	0.323	1.860
0.7	0.521	1.286	0.351	2.743	0.365	1.920
0.8	0.505	1.366	0.429	2.475	0.484	1.980
0.9	0.490	1.437	0.512	2.267	0.441	2.040
1.0	0.476	1.500	0.600	2.100	0.476	2.100
1.1	0.463	1.557	0.692	1.964	0.509	2.160
1.2	0.450	1.609	0.789	1.650	0.541	2.220
1.3	0.439	1.657	0.889	1.754	0.570	2.280
1.4	0.427	1.782	0.994	1.641	0.598	2.348
1.5	0.417	1.743	0.162	1.609	0.625	2.400
1.6	0.407	1.782	1.214	1.537	0.650	2.460
1.7	0.397	1.818	1.330	1.482	0.675	2.520
1.8	0.386	1.853	1.049	1.433	0.698	2.580
1.9	0.379	1.885	1.571	1.389	0.720	2.640
2.0	0.370	1.916	1.697	1.350	0.741	2.700

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

Продолжение таблицы 4

Вариант	19	20	21	22	23	24
X			Значение фу	ункции Y(X)		
0.5	0.745	0.325	3.490	0.294	1.700	0.912
0.6	0.891	0.412	2.967	0.337	1.760	0.936
0.7	1.015	0.502	2.657	0.376	1.860	0.961
0.8	1.121	0.599	2.425	0.412	1.940	0.967
0.9	1.216	0.696	2.244	0.446	2.220	1.013
1.0	1.300	0.800	2.100	0.475	2.100	1.040
1.1	1.375	0.906	1.982	0.505	2.180	1.068
1.2	1.446	1.014	1.883	0.531	2.240	1.096
1.3	1.510	1.125	1.800	0.556	2.340	1.125
1.4	1.569	1.239	1.729	0.579	2.420	1.155
1.5	1.624	1.355	1.667	0.600	2.500	1.186
1.6	1.676	1.474	1.612	0.620	2.580	1.217
1.7	1.724	1.595	1.565	0.639	2.660	1.250
1.8	1.770	1.718	1.522	0.657	2.740	1.283
1.9	1.813	1.843	1.484	0.674	2.820	1.317
2.0	1.855	1.970	1.450	0.690	2.900	1.352

Продолжение таблицы 4

Вариант	25	26	27	28	29	30					
X		Значение функции Y(X)									
0.5	0.467	3.200	0.313	1.600	1.049	0.625					
0.6	0.570	2.833	0.353	1.700	1.059	0.560					
0.7	0.675	2.571	0.389	1.800	1.069	0.556					
0.8	0.782	2.375	0.421	1.900	1.079	0.526					
0.9	0.891	2.222	0.450	2.000	1.090	0.500					
1.0	1.000	2.100	0.476	2.100	1.100	0.476					
1.1	1.111	2.000	0.500	2.200	1.111	0.455					
1.2	1.122	1.917	0.522	2.300	1.121	0.435					
1.3	1.355	1.846	0.542	2.400	1.132	0.417					
1.4	1.448	1.786	0.560	2.500	1.143	0.400					
1.5	1.562	1.733	0.577	2.600	1.154	0.385					
1.6	1.677	1.687	0.593	2.700	1.165	0.370					
1.7	1.793	1.647	0.607	2.800	1.176	0.357					
1.8	1.609	1.611	0.621	2.900	1.187	0.345					
1.9	2.026	1.579	0.633	3.000	1.199	0.333					
2.0	2.144	1.550	0.645	3.100	1.210	0.323					

7. ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

Цель лабораторной работы состоит в изучении и практическом освоении численных методов вычисления определенных интегралов и программирование методов на ЭВМ. В табл. 5 для каждого из вариантов указаны: подынтегральная функция f(x), верхний A и нижний B пределы интегрирования, начальное число (N) равных частей деления отрезка [A, B], оценка точности вычисленного значения ϵ и метод вычисления [21]. Отчет по лабораторной работе должен включать следующие разделы:

- 1. Математическая формулировка задачи вычисления определенного интеграла с помощью указанной квадратурной формулы.
- 2. Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
 - 4. Результаты вычислений.

Таблица 5

Вариант	Подынтегральная функция f(x)	интег	едел риро- ния	N	3	Метод вычисления
Ι		A	В			
1	$(x^2 + 0.500)^{-1}$	0,0	0,45	3	10	Левых прямо- угольников
2	$(3.300x^3-2.550x^2+0.750x+0.400)^{-1}$	0,0	0,45	3	10^{-4}	Трапеций
3	$(3.250x^3-2.500x^2+0.800x+0.450)^{-1}$	0,0	0,60	4	10^{-6}	Симпсона
4	$(3.200x^3-2.450x^2+0.850x+0.500)^{-1}$	0,0	0,45	3	10^{-3}	Правых прямо- угольников
5	$(3.150x^3-2.400x^2+0.900x+0.550)^{-1}$	0,0	0,45	3	10^{-6}	Ньютона
6	$(3.100x^3-2.350x^2+0.950x+0.600)^{-1}$	0,0	0,45	3	10^{-4}	Трапеций
7	$(3.050x^3-2.300x^2+1.000x+0.650)^{-1}$	0,0	0,60	4	10^{-6}	Симпсона
8	$(3.000x^3-2.250x^2+1.050x+0.700)^{-1}$	0,0	0,45	3	10^{-4}	Центральных прямоугольников
9	$(2.950x^3-2.200x^2+1.100x+0.750)^{-1}$	0,0	0,45	3	10^{-6}	Ньютона
10	$(2.900x^3-2.150x^2+1.150x+0.800)^{-1}$	0,0	0,45	3	10^{-4}	Трапеций
11	$(2.850x^3-2.100x^2+1.200x+0.850)^{-1}$	0,0	0,60	4	10^{-6}	Симпсона
12	$(2.800x^3-2.050x^2+1.250x+0.900)^{-1}$	0,0	0,45	3	10^{-3}	Правых прямо- угольников
13	$(2.750x^3-2.000x^2+1.300x+0.950)^{-1}$	0,0	0,45	3	10^{-6}	Ньютона
14	$(2.700x^3-1.950x^2+1.350x+1.000)^{-1}$	0,0	0,45	3	10^{-4}	Трапеций
15	$(2.650x^3-1.900x^2+1.400x+1.050)^{-1}$	0,0	0,60	4	10^{-6}	Симпсона

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

16	$(2.600x^3-1.850x^2+1.450x+1.100)^{-1}$	0,0	0,45	3	10^{-3}	Левых прямо-
						угольников
17	$(2.550x^3-1.800x^2+1.500x+1.150)^{-1}$	0.0	0.45	3	10^{-6}	Ньютона
18	$(2.500x^3-1.750x^2+1.550x+1.200)^{-1}$	0.0	0.45	3	10^{-4}	Трапеций
19	$(2.450x^3-1.700x^2+1.600x+1.250)^{-1}$	0.0	0.60	4	10^{-6}	Симпсона
20	$(2.400x^3-1.650x^2+1.650x+1.300)^{-1}$	0.0	0.45	3	10^{-3}	Правых прямо-
						угольников
21	$(2.350x^3-1.600x^2+1.700x+1.350)^{-1}$	0.0	0.45	3	10^{-6}	Ньютона
22	$(2.300x^3-1.550x^2+1.750x+1.400)^{-1}$	0.0	0.45	3	10^{-4}	Трапеций
23	$(2.250x^3-1.500x^2+1.800x+1.450)^{-1}$	0.0	0.60	4	10^{-6}	Симпсона
24	$(2.200x^3-1.450x^2+1.850x+1.500)^{-1}$	0.0	0.45	3	10^{-4}	Центральных
						прямоугольников
25	$(2.150x^3-1.400x^2+1.900x+1.550)^{-1}$	0.0	0.45	3	10^{-6}	Ньютона

Примечание. Квадратурные формулы описаны в [21]

8. РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Цель лабораторной работы: изучение вычислительных методов решения систем линейных алгебраических уравнений и составление программ для их реализации на ЭВМ. Отчет по лабораторной работе должен включать следующие разделы:

- 1. Математическая формулировка задачи вычисления определенного интеграла с помощью указанного преподавателем метода (Гаусса, Жордана, Зейделя [21]).
- 2. Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
 - 4. Результаты вычислений величин X_1, X_2, X_3 .
 - 5. Оценка невязки по каждому из трех уравнений.

Таблица 6

Вариант	I	Коэффи	Свобод- ный член		
		A(I, 1)	A(I, 2)	A(I, 3)	ныи член
1	1	1.6250	0.5303	-0.3750	1
	2	-0.3750	0.5303	1.6250	1
	3	0.5303	1.2500	0.5303	0
2	1	1.3038	0.5773	-0.4446	1
	2	0.5773	1.5072	0.4038	0
	3	-0.4446	0.4038	1.6284	1
3	1	0.9444	0.5201	-0.3817	1
	2	0.5201	1.7332	0.2419	0
	3	-0.3817	0.2419	1.5873	1
4	1	0.6590	0.3606	-0.2235	1
	2	0.3606	1.9006	0.0961	0
	3	-0.2235	0.0961	1.4380	1
5	1	0.5157	0.1270	-0.0560	1
	2	0.1270	1.9891	0.0109	0
	3	-0.0560	0.0109	1.1652	1
6	1	0.5145	-0.1331	0.0276	1
	2	-0.1331	1.9880	0.0120	0
	3	0.0276	0.0120	0.8193	1
7	1	0.5952	-0.3654	-0.0271	1
	2	-0.3654	1.8974	0.0990	0
	3	-0.0271	0.0990	0.5025	1
8	1	0.6735	-0.5227	-0.2087	1
	2	-0.5227	1.7283	0.2458	0
	3	-0.2087	0.2452	0.3279	1
9	1	0.5022	-0.2381	-0.5686	1

	2	-0.2381	0.7620	0.5174	0
	3	-0.5686	0.5174	1.4764	1
10	1	0.5992	-0.0932	-0.3417	1
	2	-0.0932	0.5963	0.3557	0
	3	-0.3417	0.3557	1.8141	1
11	1	0.8459	-0.0098	-0.0931	1
	2	-0.0098	0.4099	0.1209	0
	3	-0.0931	0.1209	1.9825	1
12	1	1.1935	-0.0131	0.0746	1
	2	-0.0131	0.5132	-0.1392	0
	3	0.0796	-0.1392	1.9798	1
13	1	1.5390	-0.1020	0.0978	1
	2	-0.1.20	0.6058	-0.3709	0
	3	0.0978	-0.3703	1.8673	1
14	1	1.7659	-0.2497	-0.0202	1
	2	-0.2497	0.7765	-0.5253	0
	3	-0.0202	-0.5253	1.7331	1
15	1	1.7937	-0.4111	-0.2425	1
	2	-0.4111	1.0047	-0.5773	0
	3	-0.2125	-0.5773	1.6466	1
16	1	1.6122	0.5374	-0.3812	1
	2	-0.5347	1.2626	-0.5258	0
	3	-0.3812	-0.5258	1.6250	1
17	1	1.2865	-0.5770	-0.4445	1
	2	-0.5770	1.5190	-0.3965	0
	3	-0.4445	-0.3965	1.6280	1
18	1	0.9282	-0.5770	-0.4445	1
	2	-0.5147	1.5190	-0.3965	0
	3	-0.3757	-0.3965	1.6280	1
19	1	0.9282	-0.3500	-0.2148	1
	2	-0.5147	1.9067	-0.0403	0
	3	-0.2148	-0.0903	1.4276	1
20	1	0.5127	-0.1147	-0.0494	1
	2	-0.1147	1.9911	-0.0089	0
	3	-0.0494	-0.0089	1.1496	1
21	1	0.5171	0.1453	0.0283	1
	2	0.1453	1.9856	-0.0143	0
	3	0.0283	-0.0143	0.8025	1
22	1	0.5997	0.3750	-0.0333	1
	2	0.3750	1.8940	-0.1050	0
	3	-0.333	-0.1050	0.4901	1
23	1	0.6759	0.5278	-0.2195	1
	2	0.5278	1.7186	-0.2537	0
	3	-0.2195	-0.2531	0.3247	1
24	1	0.5035	0.2303	-0.5597	1

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

	2	0.2303	0.7526	-0.5119	0
	3	-0.5597	-0.5119	1.4956	1
25	1	0.6078	0.0875	-0.3294	1
	2	0.0875	0.5902	-0.3458	0
	3	-0.3294	-0.3458	1.8264	1
26	1	0.8609	0.0079	-0.0625	1
	2	0.0079	0.5079	-0.1086	0
	3	-0.0825	-0.1086	1.9860	1

Примечание. В табл. 6 приняты обозначения: I – номер уравнения (I = 1, 2, 3), коэффициенты A(I, 1), A(I, 2), A(I, 3) и B(I) – образуют систему из трех уравнений с тремя неизвестными X_1 , X_2 , X_3 .

$$\begin{cases} A_{11} \cdot X_1 + A_{12} \cdot X_2 + A_{13} \cdot X_3 = B_1 \\ A_{21} \cdot X_1 + A_{22} \cdot X_2 + A_{23} \cdot X_3 = B_2 \\ A_{31} \cdot X_1 + A_{32} \cdot X_2 + A_{33} \cdot X_3 = B_3 \end{cases}$$

9. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Цель лабораторной работы: изучение вычислительных методов решения нелинейных уравнений и составление программ для их реализации на ЭВМ. Отчет по лабораторной работе должен включать следующие разделы:

- 1. Математическая формулировка задачи отделения корней нелинейного уравнения с последующим их уточнением с помощью указанного преподавателем метода (дихотомии, касательных, хорд, итераций [21]).
- 2. Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
 - 4. Результаты вычислений в форме приведенного ниже шаблона

№	Интервал изс	оляции корня	Значение	Погрешность,
корня			корня, X_i	ε
	A	В		
1				
2				
3				

Таблина 7

Вари-	Уравнение	A	В	3	N
1	$x^3 = 2.25x^2 + 12.3904x - 27.8784$	-4	4	10^{-8}	8
2	$x^3 = 2.20x^2 + 11.9025x - 26.1855$	-4	4	10^{-8}	8
3	$x^3 = 2.15x^2 + 11.4244x - 24.5624$	-4	4	10^-8	8
4	$x^3 = 2.10x^2 + 10.9561x - 23.0078$	-4	4	10^{-8}	8
5	$x^3 = 2.05x^2 + 10.4976x - 21.5201$	-4	4	10^8	8
6	$x^3 = 2.00x^2 + 10.0489x - 20.0978$	-4	4	10^{-8}	8
7	$x^3 = 1.95x^2 + 9.6100x - 18.7395$	-4	4	10^{-8}	8
8	$x^3 = 1.90x^2 + 9.1809x - 17.4437$	-4	4	10^{-8}	8
9	$x^3 = 1.85x^2 + 8.7618x - 16.2090$	-4	4	10^{-8}	8
10	$x^3 = 1.80x^2 + 8.3521x - 15.0338$	-4	4	10^{-8}	8
11	$x^3 = 1.75x^2 + 7.9524x - 13.9167$	-4	4	10^{-8}	8
12	$x^3 = 1.70x^2 + 7.5625x - 12.8563$	-4	4	10^{-8}	8

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

13	$x^3 = 1.65x^2 + 7.1824x - 11.8510$	-4	4	10^{-8}	8
14	$x^3 = 1.60x^2 + 6.8121x - 10.8994$	-4	4	10^{-8}	8
15	$x^3 = 1.55x^2 + 6.4516x - 10.0000$	-4	4	10^{-8}	8
16	$x^3 = 1.50x^2 + 6.1009x - 9.1514$	-4	4	10^{-8}	8
17	$x^3 = 1.45x^2 + 5.7600x - 8.3520$	-4	4	10^{-8}	8
18	$x^3 = 1.40x^2 + 5.4289x - 7.6005$	-4	4	10 -8	8
19	$x^3 = 1.35x^2 + 5.1076x - 6.8952$	-4	4	10^{-8}	8
20	$x^3 = 1.30x^2 + 4.7961x - 6.2349$	-4	4	10^{-8}	8
21	$x^3 = 1.25x^2 + 4.4944x - 5.6180$	-4	4	10^{-8}	8
22	$x^3 = 1.20x^2 + 4.2025x - 5.0430$	-4	4	10^{-8}	8
23	$x^3 = 1.15x^2 + 3.9204x - 4.5085$	-4	4	10^{-8}	8
24	$x^3 = 1.10x^2 + 3.6481x - 4.0129$	-4	4	10 -8	8
25	$x^3 = 1.05x^2 + 3.3856x - 3.5549$	-4	4	10^{-8}	8
26	$x^3 = 1.00x^2 + 3.1329x - 3.1329$	-4	4	10^{-8}	8
27	$x^3 = 0.95x^2 + 2.8900x - 2.7455$	-4	4	10^{-8}	8
28	$x^3 = 0.90x^2 + 2.6569x - 2.3912$	-4	4	10^{-8}	8
29	$x^3 = 0.85x^2 + 2.4336x - 2.0686$	-4	4	10^{-8}	8
30	$x^3 = 0.80x^2 + 2.2201x - 1.7761$	-4	4	10^{-8}	8
	•	•	•		

Примечание. В табл. 7 приняты обозначения: А - начало отрезка, В - конец отрезка ($x \in [A,B]$), ε - оценка точности решения, N — наименьшее число интервалов разбиения отрезка [A,B] .

10. ПРИБЛИЖЕННОЕ ИНТЕГРИРОВАНИЕ ОБЫКНОВЕННОГО ДИФФЕ-РЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Практическое освоение метода численного интегрирования обыкновенного дифференциального уравнения первого порядка с помощью методов Рунге-Кутты и программирование вычислительного процесса решения задачи Коши на ЭВМ [19, 21]. Варианты заданий представлены в табл. 8. Отчет по лабораторной работе должен включать следующие разделы:

- 1. Вариант задания.
- 2. Формулы численного решения задачи Коши для соответствующего варианта.
- 2. Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
 - 4. Результаты вычислений в форме приведенного ниже шаблона

Номер точки, і	Значение ар- гумента, X_i	Значение функции, $Y_i = Y(X_i)$
0	\mathbf{x}_0	y_0
1		

5. График на миллиметровке. На графике по найденным точкам $\{X_i,Y_i/i=\overline{0,n}\}$ построить функцию Y(X) .

Таблица 8

Вариант	Общий вид уравнения $F(x, y, y') = 0$	\mathbf{x}_0	У0	X _n	N	Правила
1	$2x + y^2 - y' = 0$	0.4	1.2	2.0	16	1
2	$x + y^2 - y' = 0$	0	0.5	1.2	12	2
3	$2x + y^2 - y' = 0$	0	0.3	1.0	10	3
4	$0.2x + y^2 - y' = 0$	0	0.1	1.6	16	4
5	$x^2 + 2y - y' = 0$	0	0.1	1.8	18	5
6	$x^2 + y^2 - y^2 = 0$	0	0.7	1.0	10	6
7	$0.3x + y^2 - y' = 0$	0	0.4	1.6	16	7
8	$x + 0.3y^2 - y' = 0$	0	0.3	1.2	12	8
9	$0.1x^2 + 2x \cdot y - y' = 0$	0	0.8	1.4	14	9
10	$3x^2 + 0.1x \cdot y - y' = 0$	0	0.2	1.5	15	10
11	$4x + y^2 - 2y' = 0$	0	0.3	1.4	14	11
<i></i>						

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

12	$2x^2 - 4y - 2y' = 0$	0	0.1	1.6	16	12
13	$x \cdot y + 0.1y^2 - y' = 0$	0	0.5	1.2	12	1
14	$x \cdot y + 0.2y^2 - y' = 0$	0	0.7	1.4	14	2
15	$3x + 0.1y^2 - y' = 0$	0	0.4	1.0	10	3
26	$\mathbf{x} \cdot \mathbf{y} + \mathbf{y}^2 - \mathbf{y}' = 0$	0	0.6	1.2	12	4
17	$x^2 + y + y' = 0$	0	0.4	1.6	16	5
18	$x \cdot y + y^2 - y' = 0$	0	0.6	1.4	14	6
19	$2x^2 + x \cdot y - y' = 0$	0	0.5	1.2	12	7
20	$x^2 + 0.2x \cdot y - y' = 0$	0	0.6	1.4	14	8
21	$0.4x + y^2 - 2y' = 0$	0	0.1	1.2	12	9
22	$1.5x + y^2 - 1.5y' = 0$	0	0.5	1.4	14	10
23	$2x^2 + 4y - 2y' = 0$	0	0.1	1.5	15	11
24	$6x^2 + 0.2x \cdot y - 2y' = 0$	0	0.2	1.6	16	12
25	$2x \cdot y + 0.2y^2 - 2y' = 0$	0	0.5	1.2	12	1
26	$1.3x^2 + y^2 - 1.3y' = 0$	0	0.7	1.4	14	2
27	$1.5x^2 + 0.05x \cdot y - 0.5y' =$	0	0.2	1.0	10	3
_	0					
28	$x^2 + 1.2y - 1.2y' = 0$	0	0.4	1.2	12	4
29	$0.5x + 0.15y^2 - 0.5y' = 0$	0	0.3	1.6	16	5

Примечание. В табл. 8 приняты обозначения: x_0 , y_0 - начальные условия; x_n - конец промежутка; N - число шагов интегрирования; npaвилa - номер варианта правил Рунге-Кутты в табл. 11 приложения 2.

11. ИНТЕГРИРОВАНИЕ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИ-АЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

Практическое освоение метода численного интегрирования системы обыкновенных дифференциальных уравнений первого порядка с помощью методов Рунге-Кутты и программирование вычислительного процесса решения задачи Коши на ЭВМ [19, 21]. Варианты заданий представлены в табл. 8. Отчет по лабораторной работе должен включать следующие разделы:

- 1. Вариант задания.
- 2. Формулы численного решения задачи Коши для соответствующего варианта.
- 2. Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
 - 4. Результаты вычислений в форме приведенного ниже шаблона

Номер точки, і	Значение аргумента, X_i	Значение функции, $Z_{i1} = Z_1(X_i)$	Значение функции, $Z_{i2} = Z_2(X_i)$
0	\mathbf{x}_0	Z_{01}	Z_{02}
1			•••

5. График на миллиметровке. На графике по найденным точкам $\{X_i,Z_{i1},Z_{i2}/i=\overline{0,n}\}$ построить функции $Z_1(X)$ и $Z_2(X)$.

Таблица 9

Вариант	Общий вид системы уравнений $\begin{cases} F_1(\cdot X,\ Z_1^{'},\ Z_2^{'})=0\\ F_2(\cdot X,\ Z_1^{'},\ Z_2^{'})=0 \end{cases}$	X_0	Z_{01}	Z_{02}	X _n	N	Правила
1	$\begin{cases} Z_1' \cdot X + Z_1 \cdot Z_2^2 = 0 \\ Z_2' \cdot X - Z_2^2 + Z_1 = 0 \end{cases}$	1	1	0	2.4	14	1
2	$\begin{cases} Z_1' + X \cdot Z_1 - X \cdot Z_2 = 0 \\ Z_2' - X \cdot Z_1 - X \cdot Z_2 = 0 \end{cases}$	0	1	1	1.2	12	2
3	$\begin{cases} Z_{1} \cdot Z_{2} - 2 \cdot Z_{1} + X = 0 \\ Z_{2} \cdot Z_{1} + X \cdot Z_{2} + 2 \cdot Z_{1} = 0 \end{cases}$	0.5	1	1	1.8	13	3

4	$\begin{cases} Z_1' - X - Z_2 - Sin(2 \cdot Z_1^2) = 0 \\ Z_2' - X \cdot Z_1 + 2 \cdot Z_2^2 - 1 = 0 \end{cases}$	0	1	0.5	1.4	14	4
5	$\begin{cases} Z_1' - X - Z_2 - Sin(2.5 \cdot Z_1^2) = 0 \\ Z_2' + X - Z_1 + 2.5 \cdot Z_2^2 - 1 = 0 \end{cases}$	0	1	0.5	1.2	12	5
6	$\begin{cases} Z_1 + X - 2 \cdot Z_1 - Z_2 = 0 \\ Z_2 - X - 2 \cdot Z_1 - 3 \cdot Z_2 = 0 \end{cases}$	0	1	-2	1.0	10	6
7	$\begin{cases} Z_1 \cdot X - 2 \cdot Z_1 + Z_2 = 0 \\ Z_2 \cdot X - 2 \cdot Z_1 - Z_2 \cdot Z_2 = 0 \end{cases}$	0.5	1	1	1.4	14	1
8	$\begin{cases} Z_1 \cdot X + 2.1 \cdot Z_2^2 \cdot Z_1 = 0 \\ 3 \cdot Z_1 + Z_2^2 + 3 \cdot Z_2 \cdot X = 0 \end{cases}$	1	1	0	2.2	12	2
9	$\begin{cases} Z_1 - Z_1 - Z_2 - Sin(3 \cdot Z_1^2) = 0 \\ Z_2 - X - Z_1 + 3 \cdot Z_2 - 1 = 0 \end{cases}$	0	1	0.5	1.4	14	3
10	$\begin{cases} 2 \cdot Z_1 - 2 \cdot X \cdot Z_1 - 2 \cdot X \cdot Z_2 = 0 \\ Z_2 - X \cdot Z_2 + X \cdot Z_1 = 0 \end{cases}$	0	1	1	1.0	10	4
11	$\begin{cases} (Z_1 - Z_2) \cdot X + Z_1' = 0 \\ (Z_2 + Z_1) \cdot X - Z_2' = 0 \end{cases}$	0	1	1	1.2	12	5
12	$\begin{cases} Z_1' - X - Z_2 \cdot Sin(3.5 \cdot Z_1^2) = 0 \\ Z_2^2 - X - Z_1 + 3.5 \cdot Z_2' - 1 = 0 \end{cases}$	0	1	0.5	1.4	14	6
13	$\begin{cases} Z_1 - X \cdot Z_1 - Z_2 = 0 \\ X \cdot Z_2 + Z_1 - Z_2 = 0 \end{cases}$	0	1	1	1.2	12	1
14	$\begin{cases} 2 \cdot Z_{2}^{'} - 2 \cdot X \cdot Z_{1} - X \cdot Z_{2} = 0 \\ Z_{2}^{'} - X \cdot Z_{2} + X \cdot Z_{1} = 0 \end{cases}$	0	1	1	1.4	14	2
15	$\begin{cases} Z_1' - X - Z_2 - Sin(2.5 \cdot Z_1^2) = 0 \\ Z_2' - X - Z_1 + 2.5 \cdot Z_2^2 - 1 = 0 \end{cases}$	0	1	0.5	1.6	16	3

16	$\begin{cases} X - Z_1 \cdot Z_1 + Z_2 = 0 \\ X + Z_1 \cdot Z_2 - Z_2 = 0 \end{cases}$	0	1	1	1.2	12	4

Примечание. В табл. 9 приняты обозначения: X_0 , Z_{01} , Z_{02} - начальные условия; $X_{\mathbf{n}}$ - конец промежутка; N - число шагов интегрирования; npaвилa - номер варианта правил Рунге-Кутты в табл. 11.

12. ИНТЕГРИРОВАНИЕ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

Практическое освоение метода численного интегрирования обыкновенного дифференциального уравнения первого порядка с помощью методов Рунге-Кугты и программирование вычислительного процесса решения задачи Коши на ЭВМ [19, 21]. Варианты заданий представлены в табл. 8. Отчет по лабораторной работе должен включать следующие разделы:

- 1. Вариант задания.
- 2. Формулы численного решения задачи Коши для соответствующего варианта.
- Таблица имен и алгоритм в графическом виде (структурограмма, или блок схема).
 - 3. Программа на языке Паскаль.
 - 4. Результаты вычислений в форме приведенного ниже шаблона

Номер точки, і	Значение аргумента, X_i	Значение функции, $Y_i = Y(X_i)$
0	\mathbf{x}_0	y_0
1		

5. График на миллиметровке. На графике по найденным точкам $\{X_i,Y_i/i=\overline{0,n}\}$ построить функцию Y(X) .

Таблица 10

Вариант	Общий вид уравнения $F(x, y, y', y'') = 0$	X_0	Y_0	Y ₀ '	X _n	N	8	Правила
1	$\begin{cases} x^2 \cdot y'' + x \cdot y' + (x^2 + 1) \cdot y = \\ 0 \end{cases}$	1	0.44	0.32	2.5	15	10^{-4}	7
2	$x^2 \cdot y^2 + 2 x \cdot y' - 2 \cdot y'' = 0$	0	1	0.5	1.2	12	10^{-4}	8
3	$x \cdot y' + x^2 \cdot y'' + (x^2 - 1) \cdot y = 0$	0.5	0	1	1.9	14	10 -4	9
4	$(1 - x^2) \cdot y'' + x \cdot y' + 9 \cdot y = 0$	0	0	-3	0.9	9	10 -5	10
5	$x \cdot y' + x^2 \cdot y'' - (x^2 + 1) \cdot y = 0$	1	0.56	0.7	2.2	12	10 -5	11
6	$x \cdot y' - (x^2 + y^2) \cdot y'' = 0$	0	1	1	1.6	16	10 ⁻⁵	12

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

7	$x^2 \cdot y - 4 \cdot y' + y'' - e^x = 0$	0	0	0	1.2	12	10^{-4}	7
8	$x \cdot y - 2 \cdot y' - y'' + Cos(x) = 0$	1	1	1	2.4	14	10^{-4}	8
9	$y'' - x \cdot y' + 0.5 \cdot (x^2 + y^2) = 0$	0	1	0.5	1.4	14	10^{-4}	9
10	$y - x^2 \cdot (y'' + y') - x \cdot y^2 = 0$	0.4	0	1	1.6	12	10 -5	10
11	$\mathbf{x} \cdot (\mathbf{y}' - \mathbf{x} \cdot \mathbf{y}'') - \mathbf{y}^2 \cdot \mathbf{y}'' = 0$	0	1	1	1.0	10	10 ⁻⁵	11
12	$y'' - x \cdot (y' + x \cdot y'') + 9 \cdot y = 0$	2	0	-3	3.2	12	10^{-5}	12
13	$x \cdot y' - (x^2 + y^2) \cdot y'' = 0$	0	1	1	1.4	14	10^{-4}	7
14	$x \cdot y' + x^2 \cdot y'' - (x^2 + 1) \cdot y = 0$	1	0.56	0.7	2.2	12	10^{-4}	8
15	$y'' \cdot (1 + x^2) - x \cdot y' + 5 \cdot y = 0$	0	0	-3	1.6	16	10^{-4}	9
16	$x^2 + 2 x \cdot y' + y^2 - 2 \cdot y'' = 0$	0	1	0.5	1.4	14	10 -5	10
17	$x^2 \cdot y'' + x \cdot y' - y \cdot (1 - x^2) = 0$	0.5	0.44	0.32	1.5	10	10^{-5}	11
18	$2 \cdot x^2 + x \cdot y - 2 \cdot y' - y'' = 0$	0.4	1.8	0.6	1.6	12	10^{-5}	12

Примечание. В табл. 11 приняты обозначения: X_0 , Y_0 , Y_0 , - начальные условия; X_n - конец промежутка; N - число шагов интегрирования; ϵ - оценка точности решения; *правила* - номер варианта правил Рунге-Кутты в табл. 11.

приложение 1.

Вычисление определителя

Определение. Определителем (детерминантом) квадратной матрицы (таблицы) с n^2 вещественными или комплексными числами является величина D:

$$D = \det[a_{ik}] = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Значение D находится как сумма n! членов $(-1)^r a_{1k_1} a_{2k_2} \cdots a_{nk_n}$, каждый из которых соответствует одному из n! различных упорядоченных множеств k_1, k_2, \cdots, k_n , полученных г попарными перестановками (транспозициями) элементов из множества 1, 2, ..., n. Число n называют порядком определителя.

Вычисление определителя третьего порядка

Определитель третьего порядка Δ вычисляется по следующему правилу:

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 - a_1 b_3 c_2 + b_1 c_2 a_3 - b_1 c_3 a_2 + c_1 a_2 b_3 - c_1 a_3 b_2.$$

приложение 2.

Варианты правил типа Рунге-Кутты для численного решения ОДУ

Правила одной и той же степени точности S могут отличаться числовыми коэффициентами, используемыми при вычислении частичных приращений P_1 , P_2 , P_3 , P_4 и значений ΔY . Например, для S=2 существует масса возможных вариантов, которые легко найти из следующих формул (1): $a_2=b_{21}=1/2w$, $g_1=1$ - w, $g_2=w$, где w- любое вещественное число, удовлетворяющее условию $0 < w \le 1$. Правила выбора оптимального набора коэффициентов нет. Числовые значения коэффициентов A, B, G для степеней точности S=2, G, G0 приведены в табл. G11. Эти значения - наиболее часто используемые варианты правил типа G1.

Таблица 11

S	Ma		A]	В						(Ĵ	
3	№	a_2	a_3	a_4	b ₁₂	b ₃₁	b ₃₂	b ₄₁	b ₄₂	b ₄₃	g_1	g_2	g_3	g ₄
2	1	0.5	-	-	0.5	-	-	-	-	-	0	1	-	-
	2	2/3	-	-	2/3	-	-	-	-	-	1/4	3/4	-	-
	3	3/4	-	-	3/4	-	-	-	-	-	1/3	2/3	-	-
	4	0.8	-	-	0.8	-	-	-	-	-	3/8	5/8	-	-
	5	5/6	-	-	5/6	-	-	-	-	-	0.4	0.6	-	-
	6	5/8	-	-	5/8	-	-	-	-	-	0.2	0.8	-	-
3	7	0.5	1	-	0.5	-1	2	-	-	-	1/6	4/6	1/6	-
	8	2/3	2/3	-	2/3	0	2/3	-	-	-	2/8	3/8	3/8	-
	9	1/3	2/3	-	1/3	0	2/3	-	-	-	1/4	0	3/4	-
4	10	0.5	0.5	1	0.5	0	0.5	0	0	1	1/6	2/6	2/6	1/6
	11	0.5	2/3	1	0.5	-	1	1	-1	1	1/8	3/8	3/8	1/8
						1/3								
	12	0.5	0.5	1	0.5	0.5	1	0	0.5	0.5	1/6	3/6	1/6	1/6

Полное приращение можно найти по формуле:

$$\Delta Y = \sum_{k=1}^{S} g_k \cdot P_k. \tag{1}$$

- если S = 2, эта формула принимает вид $\Delta Y = g_1 \cdot P_1 + g_2 \cdot P_2$;
- если S = 3, то $\Delta Y = g_1 \cdot P_1 + g_2 \cdot P_2 + g_3 \cdot P_3$;
- если S=4, то $\Delta Y=g_1\cdot P_1+g_2\cdot P_2+g_3\cdot P_3+g_4\cdot P_4$.

приложение 3

СООБЩЕНИЯ ОБ ОШИБКАХ

Ниже приведен перечень наиболее вероятных ошибок, возникающих при работе в интегрированной среде BORLAND PASCAL.

ОШИБКИ СТАДИИ КОМПИЛЯЦИИ

Таблица 12

Код	Сообщение	Содержание
001	Out of memory	Выход за границы памяти. Появляется в случае, если компиляция выполняется вне допустимых границ памяти. В этом случае необходимо разбить исходный текст на два или более, программных модуля.
002	Identifier expected	Не указан идентификатор. Идентификатор должен находиться в указанном месте. Возможна попытка использования зарезервированного слова.
003	Unknown identifier	Неизвестный идентификатор. Он не был описан.
004	Duplicate identifier	Повторный идентификатор. Повторное описание одного и того же идентификатора.
005	Syntax error	Синтаксическая ошибка. В исходном тексте найден неверный знак.
006	Error in real constant	Ошибка в действительной константе.
007	Error in integer constant	Ошибка в целой константе.
008	String constant exceeds line	Строковая константа превышает размеры строки. Возможно, отсутствует кавычка в конце строковой константы.
009	Too many nested files	Слишком много вложенных файлов. Компилятор допускает не более пяти вложенных исходных файлов.
010	Unexpected end of file	Неправильный конец файла. Скорее всего, количество begin не соответствует количеству end, или комментарий не закончен знаком "}".
011	Line too long	Строка слишком длинная. Максимальная длина строки может равняться 126 символам.
012	Type identifier expected	Требуется идентификатор типа. Отсутствует указание типа идентификатора.
013	Too much open files	Слишком много открытых файлов. Необходимо увеличить в файле CONFIG.SYS параметр FILES = xx, указывающий максимально воз-

	 	1
		можное число одновременно открытых файлов.
014	Invalid filename	Неверное имя файла. Имя файла неверно или указан несуществующий путь.
015	File not found	Файл не найден. Файл не может быть найден ни в текущем каталоге, ни в каком - либо другом исследуемом каталоге, предназначенном для этого типа файлов.
016	Disk full	На диске недостаточно свободного пространства для записи файла.
017	Invalid compiler directive	Неправильная директива компилятора. Неверная буква в директиве компилятора, один из параметров директивы компилятора неверный или попытка использования глобальной директивы в неразрешенном месте программы.
018	Too many files	Слишком много файлов. В компиляции программы или программного модуля участвует слишком много файлов. Попытайтесь не использовать так много файлов, например, объединяя включаемые файлы.
019	Undefined type in pointer definition	Неопределенный тип в определении ссылки. Была осуществлена ссылка на тип в описании ссылочного типа, приведенного ранее, но не описанного.
020	Variable identifier expected	Требуется идентификатор переменной. Идентификатор не описывает переменную должным образом.
021	Error in type	Ошибка в определении типа. Определение типа не может начинаться с этого символа.
022	Structure too large	Слишком большая структура. Максимально допустимый размер структурного типа — 65520 байтов.
023	Set base type of range	Базовый тип множества нарушает границы. Базовый тип множества должен представлять собой отрезок типа с границами в пределах от 0 до 255 или перечисляемый тип с не более чем 256 значениями.
024	File components may not be files or objects	Компонентами файла не могут быть файлы или объекты.
025	Invalid string length	Неверная длина строки. Максимальная описываемая длина строки должна находиться в диапазоне от 1 до 255.
026	Type mismatch	Несоответствие типов.
027	Invalid subrange base	Неправильный базовый тип отрезка типа. Все

	type	порядковые типы должны являться допустимыми базовыми типами.
028	Lower bound greater than upper bound	Нижняя граница больше верхней. Описание отрезка типа указывает нижнюю границу большей, чем верхняя.
029	Ordinal type expected	Требуется порядковый тип. Другие типы в данном случае не допускаются.
030	Integer constant expected	Требуется целая константа.
031	Constant expected	Требуется константа.
032	Integer or real constant expected	Требуется целая или действительная константа.
033	Type identifier expected	Требуется идентификатор типа.
034	Invalid function result type	Неправильный тип результата функции. Правильными типами результата функции являются все простые типы, строковые типы и ссылочные типы.
035	Label identifier expected	Требуется идентификатор метки.
036	BEGIN expected	Требуется BEGIN PUBLIC в объектном файле.
037	END expected	Требуется END.
038	Integer expression expected	Выражение должно иметь тип integer.
039	Ordinal expression expected	Выражение должно иметь перечисляемый тип.
040	Boolean expression expected	Выражение должно иметь логический (булевский) тип.
041	Operand types do not match operator	Типы операндов не соответствуют оператору.
042	Error in expression	Ошибка в выражении.
043	Legal assignment	Неверное присваивание.
044	Field identifier expected	Требуется идентификатор поля.
045	Object file too large	Объектный файл слишком большой. Turbo Pascal не может компоновать файлы OBJ больше 64 Кбайт.
046	Undefined external	Не определена внешняя процедура. Внешняя процедура или функция не имеет соответствующего определения: Invalid object file record. Неправильная запись объектного файла.
048	Code segment too large	Сегмент кода слишком большой. Максимальный размер кода программного модуля равняет-

	1	
		ся 65520 байтам.
049	Data segment too large	Сегмент данных слишком велик. Максимальный размер сегмента данных программы равен 65520 байтам, включая данные, описываемые используемыми программными модулями.
050	DO expected	Требуется оператор DO.
051	Invalid PUBLIC definition	Неверное определение PUBLIC.
052	Invalid EXTERN defi- nition	Неправильное определение EXTERN.
053	Too much EXTERN definition	Слишком много определений типа EXTERN. Turbo Pascal не может обрабатывать файлы OBJ при более чем 256 определениях EXTERN.
054	OF expected	Требуется ОГ.
055	INTERFACE expected	Требуется интерфейсная секция.
056	Invalid relocatable reference	Недействительная перемещаемая ссылка.
057	THEN expected	Требуется ТНЕМ.
058	TO or DOWNTO expected	Требуется ТО или DOWNTO.
059	Undefined forward	Неопределенное опережающее описание.
060	Too many procedures	Слишком много процедур. Turbo Pascal не до- пускает более 512 процедур или функций в од- ном модуле.
061	Invalid typecast	Неверное преобразование типа.
062	Division by zero	Деление на ноль.
063	Invalid file type	Неверный файловый тип.
064	Cannot Read or WRITE variables of this type	Невозможно считать или записать переменные данного типа.
065	Pointer variable expected	Переменная должна иметь тип указатель.
066	String variable expected	Переменная должна иметь строковый тип.
067	String expression expected	Выражение должно иметь строковый тип.
068	Circular unit reference	Циклическая ссылка на модуль.
069	Unit name mismatch	Несоответствие имен программных модулей. Имя программного модуля, найденного в файле TPU, не соответствует имени, указанному в операторе USES.
070	Unit version mismatch	Несоответствие версий программных модулей. Один или несколько программных модулей,

		используемых данной программой, были изме-
		нены после их компиляции.
071	Duplicate unit name	Повторное имя программного модуля. Этот программный модуль уже указан в операторе USES.
072	Unit file format error	Ошибка формата файла программного модуля.
073	Implementation expected	Требуется секция реализации.
074	Constant and case types do not match	Типы констант и тип выражения оператора case не соответствуют друг другу.
075	Record variable expected	Переменная должна иметь тип запись.
076	Constant out of range	Константа нарушает границы допустимого диапазона.
077	File variable expected	Переменная должна иметь файловый тип.
078	Pointer expression expected	Выражение должно иметь ссылочный тип.
079	Integer or real expression expected	Выражение должно иметь тип integer или real.
080	Label not within current block	Метка не находится внутри текущего блока.
081	Label already defined	Данная метка уже определена.
082	Undefined label in processing statement part	Неопределенная метка в предшествующем разделе операторов. Данная метка была описана, на нее ссылались в предшествующем разделе операторов, но она не определена.
083	Invalid @ argument	Недействительный аргумент оператора @.
084	Unit expected	Требуется UNIT.
085	";" expected	Требуется указать ";"
086	":" expected	Требуется указать ":"
087	"," expected	Требуется указать ","
088	" (" expected	Требуется указать " ("
089	")" expected	Требуется указать ")"
090	"=" expected	Требуется указать "="
091	":=" expected	Требуется указать " := "
092	"[" or "(" expected	Требуется указать "[" или " ("
093	"] " or ")" expected	Требуется указать "]" или ")"
094	"." expected	Требуется указать "."
095	"" expected	Требуется указать ""
096	Too many variables	Слишком много переменных.
097	Invalid FOR control variable	Неправильная управляющая переменная оператора FOR. Управляющая переменная оператора FOR должна быть переменной перечисляемого

		типа, определенного в разделе описаний.
098	Integer variable expected	Переменная должна иметь тип INTEGER.
099	Files are procedure types are not allowed here	Здесь не допускаются файловый и процедурный типы.
100	String length mismatch	Длина строковой константы не соответствует количеству элементов символьного массива.
101	Invalid ordering of fields	Неверный порядок полей. Поля в константе типа запись должны записываться в порядке их описания.
102	String constant expected	Требуется константа строкового типа.
103	Integer or real variable expected	Требуется переменная типа INTEGER или REAL.
104	Ordinal variable expected	Требуется переменная перечисляемого типа.
105	INLINE error	Ошибка в операторе INLINE
106	Character expression expected	Выражение должно иметь символьный тип.
107	Too much relocation items	Слишком много перемещаемых элементов. Размер раздела таблицы перемещения файла EXE превышает 64 Кбайт, что является верхним пределом в Turbo Pascal.
111	Compilation aborted	Компиляция прервана с помощью клавиш Ctrl- Break.
112	CASE constant out of range	Константа CASE нарушает допустимые границы.
113	Error in statement	Ошибка в операторе. Данный символ не может быть первым символом в операторе.
114	Cannot call an inter- rupt procedure	Невозможно вызвать процедуру прерывания.
115	Must have an 8087 to compile this	Для компиляции необходимо наличие сопроцессора 8087.
117	Target address not found	Адрес назначения не найден.
118	Include files are not allowed here	В такой ситуации включаемые файлы не допускаются.
120	NIL expected	Требуется NIL.
121	Invalid qualifier	Неверный квалификатор.
122	Invalid variable reference	Недействительная ссылка на переменную.

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

123	Too many symbols	Слишком много символов. Программа или программный модуль описывает более 64 Кбайт имен переменных.
124	Statement part too large	Слишком большой раздел операторов.
126	Files must be var parameters	Слишком много условных символов.
127	Too many conditional symbols	Слишком много условных символов.
128	Misplaced conditional directive	Пропущена условная директива. Компилятор обнаружил директиву {\$ELSE} или {\$ENDIF} без соответствующих директив {\$IFDEF}, {\$IFNDEF} или {\$IFOPT}.
129	ENDIF directive missing	Пропущена директива ENDIF. В исходном файле должно быть равное количество директив {\$IFxxx} и {\$ENDIF}.
130	Error in initial conditional defines	Ошибка в условных начальных определениях.
131	Header does not match previous definition	Заголовок процедуры или функции не соответствует предыдущему определению.
132	Critical disk error	Критическая ошибка диска. Во время компиляции произошла критическая ошибка диска (например, дисковод находится в состоянии "не готов").
133	Cannot evaluate this expression	Невозможно вычислить данное выражение.
134	Expression incorrectly terminated	Некорректное завершение выражения.
135	Invalid format speci- fies	Неверный спецификатор формата.
136	Invalid indirect reference	Недопустимая косвенная ссылка.
137	Structured variable are not allowed here	Здесь не допускается использование структурной переменной.
138	Cannot evaluate with- out System unit	Невозможно вычислить без модуля System.
139	Cannot access this symbol	Доступ к данному символу отсутствует.
140	Invalid floating-point operation	Недопустимая операция с плавающей запятой. При операции с двумя действительными значениями было получено переполнение или деление на ноль.

141	Cannot compile over- lay to memory	Нельзя выполнить компиляцию оверлеев в памяти. Программа использующая оверлеи, должна компилироваться на диск.
142	Procedure or function variable expected	Должна использоваться переменная процедура или функция.
143	Invalid procedure or function reference	Недопустимая ссылка на процедуру или функцию.
144	Cannot overlay this unit	Этот модуль не может использоваться в качестве оверлейного.
145	Too many nested scopes	Слишком много точек просмотра.
147	Object type expected	Требуется объективный тип.
148	Local object types are not allowed	Местные объектные типы недопустимы. Turbo Pascal не позволяет определять тип объекта внутри процедур и функций.
149	VIRTUAL expected	Требуется указать служебное слово VIRTUAL.
150	Method identifier expected	Требуется идентификатор правила.
151	Virtual constructors are not allowed	Виртуальные конструкторы недопустимы. Правило конструктора должно быть статическим.
152	Constructor identifier expected	Требуется идентификатор конструктора.
153	Distracter identifier expected	Требуется идентификатор деструктора.
154	Fail only allowed within constructors	Вызов процедуры Fail допустим только из конструктора.

ОШИБКИ СТАДИИ ВЫПОЛНЕНИЯ

В результате возникновения ошибки во время выполнения программы на экран выдается следующее сообщение:

Runtime error nnn at xxxx: yyyy

Ошибка времени выполнения nnn по адресу xxxx: уууу, где nnn - номер ошибки времени выполнения, xxxx: уууу- адрес ошибки времени выполнения (сегмент и смещение).

Ошибки времени выполнения делятся на две категории: ошибки вводавывода (коды ошибок с1 до 199) и фатальные ошибки (коды ошибок с 200 до 255).

ОШИБКИ ВВОДА-ВЫВОДА

Эти ошибки вызывают завершение выполнения программы в случае, если конкретный оператор был скомпилирован в режиме {\$I+}. В режиме {\$I-} программа продолжает выполнение, а ошибка описывается функцией IOResult.

Таблица 13

Код	Сообщение	Содержание
001	Invalid DOS function code	Неверный код функции DOS.
002	File not found	Файл не найден. Ошибка генерируется проце- дурами Reset, Append, Rename или Erase в слу- чае, если имя, присвоенное файловой перемен- ной, указывает несуществующий файл.
003	Path not found	Маршрут не найден. Указанный маршрут является недействительным или указывает несуществующий подкаталог.
004	Too much open files	Слишком много открытых файлов. Необходимо попытаться увеличить в файле CONFIG. SYS параметр FILES = xx, указывающий максимально возможное число одновременно открытых файлов.
005	File access defined	Отказано в доступе к файлу.
006	Invalid file handle	Недопустимый файловый канал. Это является свидетельством того, что файловая переменная является испорченной каким-либо образом.
007	Not enough memory	Недостаточно памяти для запуска программы.
012	Invalid file access code	Недействительный код доступа к файлам. Ошибка генерируется процедурами Reset или Append в случае, если значение Filmed является недействительным.
015	Invalid drives number	Недопустимый номер дисковода.
016	Cannot remove cur- rent directory	Невозможно удалить текущий каталог.
017	Cannot rename across drives	Недопустимо при переименовании указывать разные дисководы.
100	Disk read error	Ошибка чтения диска. Возникает при попытке осуществить считывание после достижения конца файла.
101	Disk writes error	Ошибка записи на диск. Генерируется процедурами Close, Write, Writeln, Flush или Page в случае, если на диске нет свободного пространства.
102	File not assigned	Файлу не присвоено имя. Генерируется проце-

		дурами Reset, Rewrite, Append, Rename и Erase в случае, если файловой переменной не было присвоено имя с помощью обращения к проце-
		дуре Assign.
103	File not open	Файл не открыт.
104	File not open for input	Файл не открыт для ввода.
105	File not open for output	Файл не открыт для вывода.
106	Invalid numeric format	Неверный числовой формат. Возникает в случае, если числовое значение, считанное из текстового файла, не соответствует правильному числовому формату.
150	Disk is write protected	Диск защищен от записи.
152	Drive not ready	Дисковод находится в состоянии "не готов".
154	CRC error in data	Ошибка в исходных данных.
156	Disk seek error	Ошибка при операции установки головок на диске.
158	Sector not found	Сектор не найден.
159	Printer out of paper	Кончилась бумага на принтере.
160	Device writes fault	Ошибка при записи на устройство
100		
161	Device read fault	Ошибка при чтении с устройства.

ФАТАЛЬНЫЕ ОШИБКИ

Возникновение ошибок отнесенных к этой группе приводит к немедленному прекращению выполнения программы, так как, по мнению разработчиков языка BORLAND PASCAL, только автор прикладной программы знает, как избежать ситуаций вызывающих эти ошибки.

Таблица 14

Код	Сообщение	Содержание
200	Division by zero	Деление на ноль.
201	Range check error	Ошибка при проверке границ.
202	Stack overflow error	Переполнение стека.
203	Heap overflow error	Переполнение динамически распределяемой области памяти.
204	Invalid pointer operation	Недействительная операция ссылки.
205	Floating point over-	Переполнение при выполнении операции с пла-

ИСТОМИН Е.П., НЕКЛЮДОВА С.А., СЛЕСАРЕВА Л.С. Учебное пособие

	flow	вающей запятой.
206	Floating point under- flow	Исчезновение порядка при выполнении операции с плавающей запятой.
207	Invalid floating-point operation	Недопустимая операция с плавающей запятой.
208	Overlay manager not installed	Не установлена подсистема управления оверлеями.
209	Overlay file read error	Ошибка при чтении оверлейного файла.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Абрамов С.А., Зима Е.В. Начала информатики. М.: Наука, 1989.
- 2. Арсак Р. Программирование игр и головоломок. М.: Мир, 1994.
- 3. Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. М.: Мир, 1979.
- 4. Бородич Ю.С., Вальвачев А.Н., Кузьмич А.И. Паскаль для персональных компьютеров; Справочное пособие. Минск: Высшая школа, 1991.
- Вальвачев А.Н. Графическое программирование на языке Паскаль.: Справочное пособие. Минск: Высшая школа 1992.
- Вальвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для персональных ЭВМ.: Справочное пособие. - Минск: Высшая школа, 1989.
- 7. Виленкин Н. Я. Популярная комбинаторика. М.: Наука, 1975.
- 8. Вирт Н. Алгоритмы + структуры данных = программы. Пер. с англ. /Под ред.
- 9. Епанешников А.М., Епанешников В.А. Программирование в среде TURBO PASCAL 7.0. Диалог-МИФИ, 1996.
- Истомин Е.П., Власовец А.М. Информатика и программирование: Pascal & VBA. Учебник. – СПб.: Андреевский издательский дом, 2010.
- 11. Йенсон К., Вирт Н. ПАСКАЛЬ. Руководство для пользователя. М.: Финансы и статистика, 1989.
- 12. Кнут Д. Искусство программирования для ЭВМ, т.1-3. М.: Мир, 1976-1977.
- 13. Крупенина Н.В. Информатика. Методические указания к выполнению лабораторных работ. Часть 1. -. СПб.: СПГУВК, 1996 49с.
- 14. Липский В. Комбинаторика для программистов. М.: Мир, 1989.
- 15. Малоземов В. В. Рекурсивные вычисления. Л.: ЛГУ, 1978.
- Методы вычислений и программирование./ Методические указания к выполнению лабораторных работ./ А.Н. Егоров, В.М. Полянский, Л.М. Сорокин и др.- Л.: ЛИВТ, часть II.- 1980, 73 с.
- 17. Методы вычислений и программирование./ Методические указания к выполнению лабораторных работ. / А.Н. Егоров, В.М. Полянский, Л.М. Сорокин и др.- Л.: ЛИВТ, часть III.- 1980.- 45 с.

- 18. Методы вычислений и программирование./ Методические указания к выполнению лабораторных работ./ А.Н. Егоров, В.М. Полянский, Л.М. Сорокин и др. Л., ЛИВТ, часть IV.- 1980.- 79 с.
- 19. Мудров А.Е. Численные методы для ПЭВМ на языках бейсик, фортран и паскаль. - Томск: МП "Раско", 1992.- 270 с.
- Неклюдов С.Ю. Алгоритмизация и программирование вычислительных процессов в интегрированной среде BORLAND PASCAL. - СПб: Энергоатомиздат, 2000 - 318c.
- 21. Новичков В.С., Парфилова Н.И., Пылькин А.Н. Паскаль. /Серия Алгоритмические языки в техникуме. М.: Высшая школа, 1990.
- 22. Перминов О.Н. Программирование на языке Паскаль. М.: Радио и связь, 1988.
- 23. Прайс Д. Программирование на языке Паскаль. Практическое руководство. Пер. с англ. / Под ред. О.Н. Перминова. М.: Мир, 1987.
- 24. Пильщиков В.Н. Сборник упражнений по языку Паскаль. М.: Наука, 1989.
- 25. Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. М.: Мир, 1980.
- 26. Фаронов В.В. Основы Турбо-Паскаля. Кн. 1.-М.: МВТУ-ФЕСТО ДИДАК-ТИК.1992.
- 27. Фаронов В.В. Turbo Pascal 7.0. Практика программирования.: Учебное пособие. М.: Нолидж, 1997.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	1
1. ЛИНЕЙНЫЙ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС	4
1.1* Программирование формул	
1.2 Формализация и алгоритмизация задачи	8
2. РАЗВЕТВЛЯЮЩИЙСЯ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС	.10
2.1* Программирование формул	.10
2.2* Формализация и алгоритмизация задачи	.13
2.3 Параметрические задачи	.16
3.* ЦИКЛИЧЕСКИЕ ВЫЧИСЛИТЕЛЬНЫЕ ПРОЦЕССЫ	.20
3.1* Арифметический цикл	.20
3.2* Итерационный цикл	
3.3* Арифметические циклы с рекуррентными соотношениями	.24
3.4* Итерационные циклы с рекуррентными соотношениями	
4. ПОЛЬЗОВАТЕЛЬСКИЕ АЛГЕБРАИЧЕСКИЕ ФУНКЦИИ	.32
4.1* Применение функции в линейных и разветвляющихся	
вычислительных процессах	.32
4.2 Использование функции в циклических процессах	
4.3* Табуляция функции	.40
5. ИНТЕРПОЛИРОВАНИЕ ФУНКЦИИ	.42
6. ВЫБОР И НАХОЖДЕНИЕ ПАРАМЕТРОВ ЭМПИРИЧЕСКОЙ	
ФОРМУЛЫ	
7. ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ	.49
8. РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ	
УРАВНЕНИЙ	.51
Коэффициенты при неизвестных	.51
9. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ	.54
10. ПРИБЛИЖЕННОЕ ИНТЕГРИРОВАНИЕ ОБЫКНОВЕННОГО	
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА	.56
11. ИНТЕГРИРОВАНИЕ СИСТЕМЫ ОБЫКНОВЕННЫХ	
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА	.58
12. ИНТЕГРИРОВАНИЕ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО	
УРАВНЕНИЯ ВТОРОГО ПОРЯДКА	.61
ПРИЛОЖЕНИЕ 1	.63
Вычисление определителя	.63
Вычисление определителя третьего порядка	.63
ПРИЛОЖЕНИЕ 2	
ПРИЛОЖЕНИЕ 3	.65
СООБЩЕНИЯ ОБ ОШИБКАХ	.65
Runtime error nnn at xxxx: yyyy	.72
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	